A Comparison Study between Green Synthesis of Microwave Irradiation and Solvent Evaporation Methods in The Formation of p-Methoxycinnamic Acid-Succinic Acid Cocrystals
Abstract
Cocrystal of p-Methoxycinnamate acid-succinic acid has been produced by microwave irradiation and solvent evaporation methods. Cocrystals are formed using succinic acid as the coformer at a molar ratio of 1:1. The formation of cocrystal can be done by solvent evaporation method and microwave radiation method. Physicochemical properties have been studied by FT-IR, DSC, PXRD, and SEM analysis. The solubility test was carried out with pH 6.8 phosphate buffer at a temperature of 25±0.5°C for 5 hours and the dissolution test was carried out with 900 mL pH 6.8 phosphate buffer at a temperature of 37±0.5°C with the speed of 75 rpm using a paddle-type dissolution test apparatus. The solubility of PMCA has increased its solubility in cocrystals by the solvent evaporation method by 1.19 times and by the microwave radiation method by 1.16 times compared to PMCA. The dissolution rate of the cocrystals of the solvent evaporation method increased by 3.50 times and the cocrystals of the microwave radiation method increased by 2.29 times compared to PMCA.
References
Alfuth, J., J. Chojnacki, T. Połonski, A. Herman, M. J. Milewska, and T. Olszewska (2022). Interplay between Aryl Perfluoroaryl and Hydrogen Bonding Interactions in Cocrystals of Pentafluorophenol with Molecules of Trigonal Symmetry. Crystal Growth & Design, 22(5); 3493-3504
Alqahtani, M. S., M. Kazi, M. A. Alsenaidy, and M. Z. Ahmad (2021). Advances in Oral Drug Delivery. Frontiers in Pharmacology, 12; 618411
Bashimam, M. and H. El-Zein (2022). Pharmaceutical Cocrystal of Antibiotic Drugs: A Comprehensive Review. Heliyon, 8(12); e11872
Buddhadev, S. S. and K. C. Garala (2021). Pharmaceutical Cocrystals—A Review. In Proceedings, volume 62. MDPI, page 14
de Souza de Bustamante Monteiro, M. S., R. A. Ozzetti, A. L. Vergnanini, L. de Brito Gitirana, N. M. Volpato, Z. M. F. de Freitas, E. Ricci Júnior, and E. P. dos Santos (2012). Evaluation of Octyl p-Methoxycinnamate Included in Liposomes and Cyclodextrins in Anti-Solar Preparations: Preparations, Characterizations and in Vitro Penetration Studies. International Journal of Nanomedicine, 7(June); 3045–3058
Dhondale, M. R., P. Thakor, A. G. Nambiar, M. Singh, A. K. Agrawal, N. R. Shastri, and D. Kumar (2023). Co-Crystallization Approach to Enhance the Stability of Moisture-Sensitive Drugs. Pharmaceutics, 15(1); 189
Dwita, L. P. and N. P. E. Hikmawanti (2021). Extract, Fractions, and Ethyl-p-Methoxycinnamate Isolate from Kaempferia galanga Elicit Anti-Inflammatory Activity by Limiting Leukotriene B4 (LTB4) Production. Journal of Traditional and Complementary Medicine, 11(6); 563–569
Guo, M., X. Sun, J. Chen, and T. Cai (2021). Pharmaceutical Cocrystals: A Review of Preparations, Physicochemical Properties and Applications. Acta Pharmaceutica Sinica B, 11(8); 2537–2564
Harmayani, E., A. K. Anal, S. Wichienchot, R. Bhat, M. Gardjito, U. Santoso, S. Siripongvutikorn, J. Puripaatanavong, and U. Payyappallimana (2019). Healthy Food Traditions of Asia: Exploratory Case Studies from Indonesia, Thailand, Malaysia, and Nepal. Journal of Ethnic Foods, 6(1); 1–18
Karagianni, A., J. Quodbach, O. Weingart, A. Tsiaxerli, V. Katsanou, V. Vasylyeva, C. Janiak, and K. Kachrimanis (2022). Structural and Energetic Aspects of Entacapone-Theophylline-Water Cocrystal. Solids, 3(1); 66–92
Karimi-Jafari, M., L. Padrela, G. M. Walker, and D. M. Croker (2018). Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Crystal Growth & Design, 18(10); 6370–6387
Khan, A., Z. Iqbal, Y. Shah, L. Ahmad, Z. Ullah, and A. Ullah (2015). Enhancement of Dissolution Rate of Class II Drugs (Hydrochlorothiazide); A Comparative Study of the Two Novel Approaches; Solid Dispersion and Liqui-Solid Techniques. Saudi Pharmaceutical Journal, 23(6); 650–657
Kumar Bandaru, R., S. R. Rout, G. Kenguva, B. Gorain, N. A. Alhakamy, P. Kesharwani, and R. Dandela (2021). Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Frontiers in Pharmacology, 12(November); 780582
Liu, Y., F. Yang, X. Zhao, S. Wang, Q. Yang, and X. Zhang (2022). Crystal Structure, Solubility, and Pharmacokinetic Study on a Hesperetin Cocrystal with Piperine As Coformer. Pharmaceutics, 14(1); 94
Nandiyanto, A. B. D., R. Oktiani, and R. Ragadhita (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1); 97–118
Nijhawan, M., M. Godugu, T. Saxena, T. Farheen, and K. Dwivedi (2022). Pharmaceutical Co Crystals of Posaconazole for Improvement of Physicochemical Properties. Brazilian Journal of Pharmaceutical Sciences, 58; e191024
Pagire, S., S. Korde, R. Ambardekar, S. Deshmukh, R. C. Dash, R. Dhumal, and A. Paradkar (2013). Microwave Assisted Synthesis of Caffeine/Maleic Acid Co-Crystals: The Role of the Dielectric and Physicochemical Properties of the Solvent. CrystEngComm, 15(18); 3705–3710
Palma, V., D. Barba, M. Cortese, M. Martino, S. Renda, and E. Meloni (2020). Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes. Catalysts, 10(2); 246
Pawar, N., A. Saha, N. Nandan, and J. V. Parambil (2021). Solution Cocrystallization: A Scalable Approach for Cocrystal Production. Crystals, 11(3); 303
Rai, S. K., S. Allu, and A. K. Nangia (2020). Salts and Cocrystal of Etodolac: Advantage of Solubility, Dissolution, and Permeability. Crystal Growth & Design, 20(7); 4512–4522
Ren, S., M. Liu, C. Hong, G. Li, J. Sun, J. Wang, L. Zhang, and Y. Xie (2019). The Effects of pH, Surfactant, Ion Concentration, Coformer, and Molecular Arrangement on the Solubility Behavior of Myricetin Cocrystals. Acta Pharmaceutica Sinica B, 9(1); 59–73
Setyawan, D., I. P. Oktavia, R. Farizka, and S. Retno (2017). Physicochemical Characterization and In vitro Dissolution Test of Quercetin-Succinic Acid Co-Crystals Prepared Using Solvent Evaporation. Turkish Journal of Pharmaceutical Sciences, 14(3); 280
Setyawan, D., S. A. Permata, A. Zainul, and M. L. A. D. Lestari (2018). Improvement in Vitro Dissolution Rate of Quercetin Using Cocrystallization of Quercetin-Malonic Acid. Indonesian Journal of Chemistry, 18(3); 531–536
Setyawan, D., R. Sari, H. Yusuf, and R. Primaharinastiti (2014). Preparation and Characterization of Artesunate-Nicotinamide Cocrystal by Solvent Evaporation and Slurry Method. Asian Journal of Pharmaceutical and Clinical Research, 7(1); 62–65
Soni, G. C., P. Chaudhary, and P. Sharma (2016). Solubility Enhancement of Poorly Water Soluble Drug Aceclofenac. Indian Journal of Pharmacy and Pharmacology, 3(3); 139
Stillhart, C., K. Vučićević, P. Augustijns, A. W. Basit, H. Batchelor, T. R. Flanagan, I. Gesquiere, R. Greupink, D. Keszthelyi, and M. Koskinen (2020). Impact of Gastrointestinal Physiology on Drug Absorption in Special Populations-An UNGAP Review. European Journal of Pharmaceutical Sciences, 147(November); 105280
Tan, J., J. Liu, and L. Ran (2021). A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. Crystals, 11(5); 463
Thayyil, A. R., T. Juturu, S. Nayak, and S. Kamath (2020). Pharmaceutical Co-Crystallization: Regulatory Aspects, Design, Characterization, and Applications. Advanced Pharmaceutical Bulletin, 10(2); 203
Timmer, B. J. J. and T. J. Mooibroek (2020). Intermolecular ????–???? Stacking Interactions Made Visible. Journal of Chemical Education, 98(2); 540–545
Vemuri, V. D. and S. Lankalapalli (2021). Rosuvastatin Cocrystals: An Attempt to Modulate Physicochemical Parameters. Future Journal of Pharmaceutical Sciences, 7(1); 1–12
Wang, S. Y., H. Zhao, H. T. Xu, X. D. Han, Y. S. Wu, F. F. Xu, X. B. Yang, U. Göransson, and B. Liu (2021). Kaempferia galanga L.: Progresses in Phytochemistry, Pharmacology, Toxicology and Ethnomedicinal Uses. Frontiers in Pharmacology, 12(October); 675350
Wicaksono, Y., D. Setyawan, and S. Siswandono (2018). Multicomponent Crystallization of Ketoprofen-Nicotinamide for Improving the Solubility and Dissolution Rate. Chemistry Journal of Moldova, 13(2); 74–81
Witika, B. A., V. J. Smith, and R. B. Walker (2020). A Comparative Study of the Effect of Different Stabilizers on the Critical Quality Attributes of Self-Assembling Nano Co-Crystals. Pharmaceutics, 12(2); 182
Wünsche, S., L. Yuan, A. Seidel-Morgenstern, and H. Lorenz (2021). A Contribution to the Solid State Forms of Bis (Demethoxy) Curcumin: Co-Crystal Screening and Characterization. Molecules, 26(3); 720
Zaini, E., Afriyani, L. Fitriani, F. Ismed, A. Horikawa, and H. Uekusa (2020). Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Scientia Pharmaceutica, 88(2); 21
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.