Quercetin in Drug Carriers: Polymer Composite, Physical Characteristics, and In vitro Study
Abstract
Quercetin is a highly prevalent flavonoid commonly found in a wide variety of fruits and vegetables. This compound has various biological actions, indicating great potential in preventing diseases and promoting health but the disadvantages include low solubility and instability. The disadvantages can be overcome by using a polymer composite in the form of microspheres in the formulation. Therefore, this study aimed to review various uses of polymers in delivering quercetin compounds. The results showed that various polymers in microspheres have been formulated with quercetin to minimize the weaknesses. The delivery systems developed and reported from several related studies include microencapsulation, microcapsules, microparticles, microspheres, solid lipid microparticles (SLM), and nanoparticles. Polymers including Gelatine, Maltodextrin and Inulin, Carnauba wax, Poly (lactic-co-glycolic acid (PLGA), Gyceryl behenate, Pectin, Nano-hydroxyapatite, Polycaprolactone, Starch, Chitosan, Eudragit S 100, Sodium Alginate, Ethyl cellulose, and Alumina efficiently improved the properties of quercetin, enabling the utilization as a controlled drug delivery agent. Therefore, developing a quercetin delivery system using composite polymers presents both an opportunity and a challenge for future applications.
References
Alekseeva, O. V., A. V. Noskov, and A. V. Agafonov (2022). Structure, Physicochemical Properties, and Adsorption Performance of the Ethyl Cellulose/Bentonite Composite Films. Cellulose, 29(7); 3947–3961
Ali, A., L. Yu, H. Liu, S. Khalid, L. Meng, and L. Chen (2017). Preparation and Characterization of Starch-Based Composite Films Reinforced by Corn and Wheat Hulls. Journal of Applied Polymer Science, 134(32); 45159
Alipal, J., N. M. Pu’Ad, T. Lee, N. Nayan, N. Sahari, H. Basri, M. Idris, and H. Abdullah (2021). A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Materials Today: Proceedings, 42; 240–250
Ansari, R., S. M. Sadati, N. Mozafari, H. Ashrafi, and A. Azadi (2020). Carbohydrate Polymer-Based Nanoparticle Application in Drug Delivery for CNS-Related Disorders. European Polymer Journal, 128; 109607
Azeem, M., M. Hanif, K. Mahmood, N. Ameer, N. Ramzan, U. Abid, H. Latif, and F. R. S. Chughtai (2022). Enhanced Antibacterial and Antioxidant Properties of Chitosan-Quercetin Complex Containing Polycaprolactone Microspheres for the Treatment of Gastroenteritis: An in-vitro and in-vivo Analysis. Materials Today Communications, 31; 103780
Azeem, M., M. Hanif, K. Mahmood, F. Siddique, H. E. Hashem, M. Aziz, N. Ameer, U. Abid, H. Latif, and N. Ramzan (2023). Design, Synthesis, Spectroscopic Characterization, In-vitro Antibacterial Evaluation and In-silico Analysis of Polycaprolactone Containing Chitosan-Quercetin Microspheres. Journal of Biomolecular Structure and Dynamics, 41(15); 7084–7103
Bartnikowski, M., T. R. Dargaville, S. Ivanovski, and D. W. Hutmacher (2019). Degradation Mechanisms of Polycapro-lactone in the Context of Chemistry, Geometry and Environment. Progress in Polymer Science, 96; 1–20
Bezerra, R. D., M. M. Silva, A. I. Morais, J. A. Osajima, M. R. Santos, C. Airoldi, and E. C. Silva Filho (2014). Phosphated Cellulose As an Efficient Biomaterial for Aqueous Drug Ranitidine Removal. Materials, 7(12); 7907–7924
Bhadraiah, A., G. D. Reddy, K. Bharavi, V. R. Devi, and P. R. Kumar (2023). Albendazole Encapsulation along with Quercetin in Chitosan-Alginate Microspheres Enhances Bioavailability and Sustained Release in Broilers. The Pharma Innovation Journal, 12(5); 3717–3723
Chaaban, H., I. Ioannou, C. Paris, C. Charbonnel, and M. Ghoul (2017). The Photostability of Flavanones, Flavonols and Flavones and Evolution of Their Antioxidant Activity. Journal of Photochemistry and Photobiology A: Chemistry, 336; 131–139
Chakraborty, S., N. Kar, L. Kumari, A. De, and T. Bera (2017). Inhibitory Effect of a New Orally Active Cedrol-Loaded Nanostructured Lipid Carrier on Compound 48/80-Induced Mast Cell Degranulation and Anaphylactic Shock in Mice. International Journal of Nanomedicine, 3(2); 4849–4868
Davidovich Pinhas, M., S. Barbut, and A. Marangoni (2015). The Gelation of Oil Using Ethyl Cellulose. Carbohydrate polymers, 117; 869–878
Davoudi, Z., M. H. Azizi, M. Barzegar, and A. BernkopSchnürch (2023). Porous Starch-Inulin Loaded Quercetin Microcapsules: Characterization, Antioxidant Activity, invitro Release, and Storage Stability. Journal of Pharmaceutical Sciences, 000; 1–11
de Freitas, C. A. S., P. H. M. de Sousa, D. J. Soares, J. Y. G. da Silva, S. R. Benjamin, and M. I. F. Guedes (2019). Carnauba Wax Uses in Food–A Review. Food chemistry, 291; 38–48
Dhasmana, A., S. Malik, A. Ranjan, A. Chauhan, H. M. Tashkandi, S. Haque, R. Al-Raddadi, S. Harakeh, and G. Zengin (2022). A Bioengineered Quercetin-Loaded 3D Bio-Polymeric Graft for Tissue Regeneration and Repair. Biomedicines, 10(12); 3157
Dwivedi, R., S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D. S. Katti, and D. Mehrotra (2020). Polycaprolactone As Biomaterial for Bone Scaffolds: Review of Literature. Journal of Oral Biology and Craniofacial Research, 10(1); 381–388
Elizondo Luevano, J. H., R. Castro Ríos, R. Parra Saldívar, H. Larqué García, M. Garza Tapia, E. M. Melchor Martínez, and A. Chávez Montes (2023). Influence of the Polymer and Solvent Variables on the Nanoencapsulation of the Flavonoid Quercetin: Preliminary Study Based on Eudragit® Polymers. Applied Sciences, 13(13); 7816
Elmowafy, M., K. Shalaby, M. H. Elkomy, O. A. Alsaidan, H. A. Gomaa, O. M. Hendawy, M. A. Abdelgawad, H. M. Ali, Y. M. Ahmed, and K. M. El-Say (2023). Exploring the Potential of Quercetin/Aspirin-Loaded Chitosan Nanoparticles Coated with Eudragit L100 in the Treatment of Induced-Colorectal Cancer in Rats. Drug Delivery and Translational Research, 13; 1–21
Ezati, P. and J. W. Rhim (2021). Fabrication of QuercetinLoaded Biopolymer Films As Functional Packaging Materials. ACS Applied Polymer Materials, 3(4); 2131–2137
Farrag, Y., W. Ide, B. Montero, M. Rico, S. Rodríguez-Llamazares, L. Barral, and R. Bouza (2018). Starch Films Loaded with Donut-Shaped Starch-Quercetin Microparticles: Characterization and Release Kinetics. International Journal of Biological Macromolecules, 118; 2201–2207
Freitas, C. A. S., Í. G. P. Vieira, P. H. M. Sousa, C. R. Muniz, M. L. da Costa Gonzaga, and M. I. F. Guedes (2016). Carnauba Wax p-Methoxycinnamic Diesters: Characterisation, Antioxidant Activity and Simulated Gastrointestinal Digestion Followed by in-vitro Bioaccessibility. Food Chemistry, 196; 1293–1300
Frent, O. D., D. M. Duda-Seiman, L. G. Vicas, N. Duteanu, N. S. Nemes, B. Pascu, A. Teusdea, C. M. Morgovan, M. E. Muresan, and T. Jurca (2023). Study of the Influence of the Excipients Used for the Synthesis of Microspheres Loaded with Quercetin: Their Characterization and Antimicrobial Activity. Coatings, 13(8); 1376
Frent, , O. D., N. Duteanu, A. C. Teusdea, S. Ciocan, L. Vicas, T. Jurca, M. Muresan, A. Pallag, P. Ianasi, and E. Marian (2022). Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers, 14(3); 490
Gentile, P., V. Chiono, I. Carmagnola, and P. V. Hatton (2014). An Overview of Poly (Lactic-co Glycolic Acid) (PLGA)-Based Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences, 15(3); 3640–3659
Ghalme, S., P. Koinkar, and Y. J. Bhalerao (2020). Effect of Aluminium Oxide (Al2O3) Nanoparticles Addition into Lubricating Oil on Tribological Performance. Tribology in Industry, 42(3); 494–502
Han, C., M. Guo, J. Bai, L. Zhao, L. Wang, W. Song, and P. Zhang (2022). Quercetin-Loaded Nanocomposite Microspheres for Chronologically Promoting Bone Repair Via Synergistic Immunoregulation and Osteogenesis. Materials & Design, 222; 111045
Hariyadi, D. M., I. Prestisya, G. Suhariyono, A. Miatmoko, N. Rosita, and M. Rahmadi (2022). Characterization of Dry Powder Inhaler Quercetin Solid Lipid Microparticle (SLM) As Lung Delivery System: Effect of Polymer Concentration. Egyptian Journal of Chemistry, 65(11); 281–289
Hazra, M., D. D. Mandal, T. Mandal, S. Bhuniya, and M. Ghosh (2015). Designing Polymeric Microparticulate Drug Delivery System for Hydrophobic Drug Quercetin. Saudi Pharmaceutical Journal, 23(4); 429–436
Helmy, A. M., M. Elsabahy, M. Abd Elkareem, E. A. Ibrahim, and G. M. Soliman (2020). High Payload Chitosan Microparticles for the Colonic Delivery of Quercetin: Development and In-Vivo Evaluation in a Rabbit Colitis Model. Journal of Drug Delivery Science and Technology, 58(June); 101832
Jafernik, K., A. Ładniak, E. Blicharska, K. Czarnek, H. Ekiert, A. E. Wiącek, and A. Szopa (2023). Chitosan-Based Nanoparticles As Effective Drug Delivery Systems—A Review. Molecules, 28(4); 1963
Jat, R. (2018). Formulation and In vitro-In vivo Evaluation of Quercetin Loaded Eudragit S100 Microspheres. Asian Journal of Pharmaceutics (AJP), 12(01); 31–37
Jat, R. C., S. Jain, and K. Arora (2014). Preparation and Evaluation of Quercetin Microsphere As Antidotes of Sulphur Mustard to Overcome the Poor Bioavailability and Frequent Dose Administration of the Drug. World Journal of Pharmaceutical Research World, 4(2); 574–603
Jing, S., H. Chen, E. Liu, M. Zhang, F. Zeng, H. Shen, Y. Fang, B. Muhitdinov, and Y. Huang (2023). Oral Pectin/Oligochitosan Microspheres for Colon-Specific Controlled Release of Quercetin to Treat Inflammatory Bowel Disease. Carbohydrate Polymers, 316(March); 121025
Jo, W. S., H. Y. Song, N. B. Song, J. H. Lee, S. C. Min, and K. B. Song (2014). Quality and Microbial Safety of ‘Fuji’ Apples Coated with Carnauba-Shellac Wax Containing Lemongrass Oil. LWT-Food Science and Technology, 55(2); 490–497
Kalalo, T., A. Miatmoko, H. Tanojo, T. Erawati, D. M. Hariyadi, and N. Rosita (2022). Effect of Sodium Alginate Concentration on Characteristics, Stability and Drug Release of Inhalation Quercetin Microspheres. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 9(2); 107–114
Kantharia, N., S. Naik, S. Apte, M. Kheur, S. Kheur, and B. Kale (2014). Nano-Hydroxyapatite and Its Contemporary Applications. Bone, 34(15.2); 1–71
Karthick, V., S. Panda, V. G. Kumar, D. Kumar, L. K. Shrestha, K. Ariga, K. Vasanth, S. Chinnathambi, T. S. Dhas, and K. U. Suganya (2019). Quercetin Loaded PLGA Microspheres Induce Apoptosis in Breast Cancer Cells. Applied Surface Science, 487(May); 211–217
Karuppusamy, N., V. Mariyappan, S.-M. Chen, M. Keerthi, and R. Ramachandran (2021). A Simple Electrochemical Sensor for Quercetin Detection Based on Cadmium Telluride Nanoparticle Incorporated on Boron, Sulfur CoDoped Reduced Graphene Oxide Composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626(June); 127094
Khor, C. M., W. K. Ng, P. Kanaujia, K. P. Chan, and Y. Dong (2017). Hot-Melt Extrusion Microencapsulation of Quercetin for Taste-Masking. Journal of Microencapsulation, 34(1); 29–37
Kim, J., Y. J. Choi, H. Park, and H. s. Yun (2022). Fabrication of Multifunctional Alginate Microspheres Containing Hydroxyapatite Powder for Simultaneous Cell and Drug Delivery. Frontiers in Bioengineering and Biotechnology, 10(August); 827626
Kost, B., A. Kunicka-Styczyńska, A. Plucińska, K. Rajkowska, M. Basko, and M. Brzeziński (2022). Microfluidic Preparation of Antimicrobial Microparticles Composed of L-Lactide/1, 3-Dioxolane (co) Polymers Loaded with Quercetin. Food Chemistry, 396(June); 133639
Lai, F., I. Franceschini, F. Corrias, M. C. Sala, F. Cilurzo, C. Sinico, and E. Pini (2015). Maltodextrin Fast Dissolving Films for Quercetin Nanocrystal Delivery. A Feasibility Study. Carbohydrate Polymers, 121(1); 217–223
Lee, H., T. Nguyen, M. Kim, J. H. Jeong, and J. B. Park (2018). The Effects of Biodegradable Poly (Lactic-co-Glycolic Acid)-Based Microspheres Loaded with Quercetin on Stemness, Viability and Osteogenic Differentiation Potential of Stem Cell Spheroids. Journal of Periodontal Research, 53(5); 801–815
Lee, S., H. Park, J. S. Oh, K. Byun, D. Y. Kim, H. s. Yun, and B. J. Kang (2023). Hydroxyapatite Microbeads Containing BMP-2 and Quercetin Fabricated Via Electrostatic Spraying to Encourage Bone Regeneration. BioMedical Engineering Online, 22(1); 15
Lengyel, M., N. Kállai Szabó, V. Antal, A. J. Laki, and I. Antal (2019). Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Scientia Pharmaceutica, 87(3); 20
Li, J., C. Cai, J. Li, J. Li, J. Li, T. Sun, L. Wang, H. Wu, and G. Yu (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 23(10); 2661
Li, S. F., J.-H. Wu, T.-G. Hu, and H. Wu (2023). Encapsulation of Quercetin into Zein-Ethyl Cellulose Coaxial Nanofibers: Preparation, Characterization and Its Anticancer Activity. International Journal of Biological Macromolecules, 248(July); 125797
Liu, K., W. Chen, T. Yang, B. Wen, D. Ding, M. Keidar, J. Tang, and W. Zhang (2017). Paclitaxel and Quercetin Nanoparticles Co-Loaded in Microspheres to Prolong Retention Time for Pulmonary Drug Delivery. International Journal of Nanomedicine, 12; 8239–8255
Liu, S., Z. Fang, and K. Ng (2022). Incorporating Inulin and Chitosan in Alginate-Based Microspheres for Targeted Delivery and Release of Quercetin to Colon. Food Research International, 160(July); 111749
Liu, S., Y. T. Loo, Z. Li, and K. Ng (2023). Alginate-Inulin-Chitosan Based Microspheres Alter Metabolic Fate of Encapsulated Quercetin, Promote Short Chain Fatty Acid Production, and Modulate Pig Gut Microbiota. Food Chemistry, 418(February); 135802
Lourenço, S. C., M. Moldão Martins, and V. D. Alves (2020). Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum As Wall Matrices. Foods, 9(6); 718
Lukova, P., P. Katsarov, and B. Pilicheva (2023). Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers, 15(17); 3615
Lv, L. C., Q. Y. Huang, W. Ding, X. H. Xiao, H. Y. Zhang, and L. X. Xiong (2019). Fish Gelatin: The Novel Potential Applications. Journal of Functional Foods, 63(January); 103581
Madaan, K., V. Lather, and D. Pandita (2016). Evaluation of Polyamidoamine Dendrimers As Potential Carriers for Quercetin, a Versatile Flavonoid. Drug Delivery, 23(1); 254–262
Malvano, F., A. M. I. Montone, R. Capparelli, F. Capuano, and D. Albanese (2021). Development of a Novel Active Edible Coating Containing Hydroxyapatite for Food Shelf-Life Extension. Chemical Engineering Transactions, 87(March); 25–30
Mensink, M. A., H. W. Frijlink, K. van der Voort Maarschalk, and W. L. Hinrichs (2015). Inulin, a Flexible Oligosac-charide I: Review of Its Physicochemical Characteristics. Carbohydrate Polymers, 130; 405–419
Milano, F., A. Masi, M. Madaghiele, A. Sannino, L. Salvatore, and N. Gallo (2023). Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics, 15(5); 1499
Mohammed, M. A., J. T. Syeda, K. M. Wasan, and E. K. Wasan (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4); 53
Mohseni Shahri, F. S. and F. Moeinpour (2023). Development of a pH-Sensing Indicator for Shrimp Freshness Monitoring: Curcumin and Anthocyanin-Loaded Gelatin Films. Food Science & Nutrition, 11(7); 3898–3910
Montone, A. M. I., F. Malvano, R. Taiano, R. Capparelli, F. Capuano, and D. Albanese (2023). Alginate Coating Charged by Hydroxyapatite Complexes with Lactoferrin and Quercetin Enhances the Pork Meat Shelf Life. Foods, 12(3); 553
Muniyandy, S., L. M. Yi, A. Santhagunam, and L. H. Chuah (2020). Chitosan-Sodium Lauryl Sulfate/Eudragit S100 Beads Loaded with 5-Fluorouracil: Influence of Solvent and Duration of Crosslinking the Crosslinking on Physicochemical Properties. Materials Research Express, 7(11); 115402
Nalini, T., S. K. Basha, A. M. M. Sadiq, V. S. Kumari, and K. Kaviyarasu (2019). Development and Characterization of Alginate/Chitosan Nanoparticulate System for Hydrophobic Drug Encapsulation. Journal of Drug Delivery Science and Technology, 52(April); 65–72
Nematollahi, E., M. Pourmadadi, F. Yazdian, H. Fatoorehchi, H. Rashedi, and M. N. Nigjeh (2021). Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone Coated Nanoporous γ-Alumina As a pH-Sensitive Carrier for Controlled Release of Quercetin. International Journal of Biological Macromolecules, 183; 600–613
Nguyen, T. T. and J. H. Jeong (2018). Development of a Single-Jet Electrospray Method for Producing Quercetin-Loaded Poly (Lactic-co-Glycolic Acid) Microspheres with Prolonged-Release Patterns. Journal of Drug Delivery Science and Technology, 47(July); 268–274
Olechno, K., A. Basa, and K. Winnicka (2021). “Success Depends on Your Backbone”—About the Use of Polymers as Essential Materials Forming Orodispersible Films. Materials, 14(17); 4872
Paranjpe, K. Y. (2017). Alpha, Beta and Gamma Alumina As Catalyst. The Pharma Innovation Journal, 6(11); 236–238
Patel, P. and T. Patel (2022). Design and Development of Dual Functional Colon Targeted Eudragit/Chitosan Nanoparticles: A QbD Approach. Indian Journal of Pharmaceutical Education and Research, 56(4); 1063–1075
Pepla, E., L. K. Besharat, G. Palaia, G. Tenore, and G. Migliau (2014). Nano-Hydroxyapatite and Its Applications in Preventive, Restorative and Regenerative Dentistry: A Review of Literature. Annali Di Stomatologia, 5(3); 108
Pingale, P. L. and S. V. Amrutkar (2021). Quercetin Loaded Rifampicin-Floating Microspheres for Improved Stability and In-vitro Drug Release. Pharmacophore, 12(3); 95–99
Pivette, P., V. Faivre, J. B. Brubach, G. Daste, M. Ollivon, and S. Lesieur (2014). Polymorphism of Glyceryl Behenates: From the Individual Compounds to the Pharmaceutical Excipient. Chemistry and Physics of Lipids, 183; 191–203
Ren, M., X. Wang, M. Hu, Y. Jiang, D. Xu, H. Xiang, J. Lin, and B. Yu (2022). Enhanced Bone Formation in Rat Critical-Size Tibia Defect by a Novel Quercetin-Containing Alpha-Calcium Sulphate Hemihydrate/Nano-Hydroxyapatite Composite. Biomedicine & Pharmacotherapy, 146(October); 112570
Rosita, N., N. Ambarwati, T. Erawati, and D. M. Hariyadi (2022). Characterization and In vitro Release of Inhalation Quercetin Solid Lipid Microparticles: Effect of Lipid. Journal of Advanced Pharmaceutical Technology & Research, 13(1); 11
Rubini, K., E. Boanini, A. Menichetti, F. Bonvicini, G. A. Gentilomi, M. Montalti, and A. Bigi (2020). Quercetin Loaded Gelatin Films with Modulated Release and Tailored Anti-Oxidant, Mechanical and Swelling Properties. Food Hydrocolloids, 109(March); 106089
Saavedra Leos, M. Z., M. Román Aguirre, A. Toxqui Terán, V. Espinosa Solís, A. Franco Vega, and C. Leyva Porras (2022). Blends of Carbohydrate Polymers for the CoMicroencapsulation of Bacillus Clausii and Quercetin As Active Ingredients of a Functional Food. Polymers, 14(2); 236
Sakhno, T. V., N. N. Barashkov, I. S. Irgibaeva, S. Pustovit, and Y. E. Sakhno (2016). Polymer Coatings for Protection of Wood and Wood-Based Materials. Advances in Chemical Engineering and Science, 6(2); 93–110
Sedighi, M., N. Omidi, and A. Jabbari (2017). Experimental Investigation of FGM Dental Implant Properties Made from Ti/HA Composite. Mechanics of Advanced Composite Structures, 4(3); 233-237
Setyawan, D., S. Febrianti, A. Zainul, and R. Sari (2017). PEG 8000 Increases Solubility and Dissolution Rate of Quercetin in Solid Dispersion System. Marmara Journal of Pharmaceutical Sciences, 22(2); 259–266
Souza, K. S., L. S. Moreira, B. T. Silva, B. P. Oliveira, A. S. Carvalho, P. S. Silva, W. A. Verri Jr, A. B. Sá Nakanishi, L. Bracht, and J. N. Zanoni (2021). Low Dose of QuercetinLoaded Pectin/Casein Microparticles Reduces the Oxidative Stress in Arthritic Rats. Life Sciences, 284(June); 119910
Steigerwald, H., F. Blanco-Perez, M. Albrecht, C. Bender, A. Wangorsch, H.-U. Endreß, M. Bunzel, C. Mayorga, M. J. Torres, and S. Scheurer (2021). Does the Food Ingredient Pectin Provide a Risk for Patients Allergic to Non-Specific Lipid-Transfer Proteins? Foods, 11(1); 13
Su, K. and C. Wang (2015). Recent Advances in the Use of Gelatin in Biomedical Research. Biotechnology Letters, 37(11); 2139–2145
Su, X., Z. Yang, K. B. Tan, J. Chen, J. Huang, and Q. Li (2020). Preparation and Characterization of Ethyl Cellulose Film Modified with Capsaicin. Carbohydrate Polymers, 241(April); 116259
Sun, D., L. Nuan, W. Zhang, Z. Zhao, Z. Mou, D. Huang, J. Liu, and W. Wang (2016). Design of PLGA-Functionalized Quercetin Nanoparticles for Potential Use in Alzheimer’s Disease. Colloids and Surfaces B: Biointerfaces, 148; 116–129
Sunoqrot, S. and L. Abujamous (2019). pH-Sensitive Poly-meric Nanoparticles of Quercetin As a Potential Colon Cancer-Targeted Nanomedicine. Journal of Drug Delivery Science and Technology, 52(April); 670–676
Swider, E., O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries, and M. Srinivas (2018). Customizing Poly(Lactic-co-Glycolic Acid) Particles for Biomedical Applications. Acta Biomaterialia, 73; 38–51
Szulc Musioł, B., W. Siemiradzka, and D. Barbara (2023). Formulation and Evaluation of Hydrogels Based on Sodium Alginate and Cellulose Derivatives with Quercetin for Topical Application. Applied Sciences, 13(13); 7826
Thakur, S., P. P. Govender, M. A. Mamo, S. Tamulevicius, and V. K. Thakur (2017). Recent Progress in Gelatin Hydrogel Nanocomposites for Water Purification and Beyond. Vacuum, 146; 396–408
Viscusi, G., G. Paolella, E. Lamberti, I. Caputo, and G. Gorrasi (2023). Quercetin-Loaded Polycaprolactone-Polyvinylpyrrolidone Electrospun Membranes for Health Application: Design, Characterization, Modeling and Cytotoxicity Studies. Membranes, 13(2); 242
Wibowo, Y. G., M. F. Imron, S. B. Kurniawan, B. S. Ramadan, T. Taher, A. H. Sudibya, H. Syarifuddin, and K. Khairurrijal (2023). Emerging Strategies for Mitigating Acid Mine Drainage Formation and Environmental Impacts: A Comprehensive Review of Recent Advances. Science and Technology Indonesia, 8(4); 516–541
Wiggers, H. J., P. Chevallier, F. Copes, F. H. Simch, F. da Silva Veloso, G. M. Genevro, and D. Mantovani (2022). Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Frontiers in Bioengineering and Biotechnology, 10(March); 814162
Xu, D., L. N. Gao, X. J. Song, Q. W. Dong, Y. B. Chen, Y. L. Cui, and Q. Wang (2023). Enhanced Antidepressant Effects of BDNF-Quercetin Alginate Nanogels for Depression Therapy. Journal of Nanobiotechnology, 21(1); 379
Yaghoubi, A., M. Ghojazadeh, S. Abolhasani, H. Alikhah, and F. Khaki Khatibi (2015). Correlation of Serum Levels of Vitronectin, Malondialdehyde and Hs-CRP with Disease Severity in Coronary Artery Disease. Journal of Cardiovascular and Thoracic Research, 7(3); 113
Yasir, M., I. Chauhan, A. Zafar, M. Verma, N. K. Alruwaili, K. Noorulla, A. P. Singh, and A. J. Tura (2023). Glyceryl Behenate-Based Solid Lipid Nanoparticles As a Carrier of Haloperidol for Nose to Brain Delivery: Formulation Development, In-vitro, and In-vivo Evaluation. Brazilian Journal of Pharmaceutical Sciences, 58; 1–18
Yazdani, J., E. Ahmadian, S. Sharifi, S. Shahi, and S. M. Dizaj (2018). A Short View on Nanohydroxyapatite As Coating of Dental Implants. Biomedicine & Pharmacotherapy, 105(April); 553–557
Yong, H., R. Bai, F. Bi, J. Liu, Y. Qin, and J. Liu (2020). Synthesis, Characterization, Antioxidant and Antimicrobial Activities of Starch Aldehyde-Quercetin Conjugate. International Journal of Biological Macromolecules, 156; 462–470
Zhou, J., N. Li, P. Liu, Z. Liu, L. Gao, and T. Jiao (2022). Preparation of Fluorescently Labeled Chitosan-Quercetin Drug-Loaded Nanoparticles with Excellent Antibacterial Properties. Journal of Functional Biomaterials, 13(3); 141
Zhou, L., L. Cai, H. Ruan, L. Zhang, J. Wang, H. Jiang, Y. Wu, S. Feng, and J. Chen (2021). Electrospun Chitosan Oligosaccharide/Polycaprolactone Nanofibers Loaded with Wound-Healing Compounds of Rutin and Quercetin As Antibacterial Dressings. International Journal of Biological Macromolecules, 183; 1145–1154
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.