Crystal Engineering Approach in Physicochemical Properties Modifications of Phytochemical
Abstract
Phytochemicals have been used to reduce the risk of diseases and maintain good health and well-being. However, most phytochemicals have a limitation in their physicochemical properties, which can be modified by reforming the shape of the crystals. Therefore, crystal engineering is a promising approach to optimize physicochemical characteristics of the active pharmaceutical ingredients (APIs) in a phytochemical without altering its pharmacological efficacy. Hence, this paper reviews current strategies for the use of crystal engineering to optimize physicochemical properties of phytochemicals, which is followed by the design of the synthesis and characterization of particular phytochemicals, including piperine (PIP), quercetin (QUE), curcumin (CUR), genistein (GEN), and myricetin (MYR). The literature indicates that crystal engineering of multicomponent crystals (MCCs) enhances phytochemical physicochemical properties, including solubility, dissolution rate, stability, and permeability. The MCCs provide a lower lattice energy and noncovalent bonding, which translate into lower melting points and weak intermolecular interactions that generate greater solubility, higher dissolution rate, and better stability of the APIs. Nevertheless, the absence of reported studies of phytochemical crystal engineering leads to a lack of variation in the selection of coformers, methods of preparation, and improvement of physicochemical properties. Therefore, more extensive evaluation of the design and physicochemical characteristics of phytochemicals using MCCs is necessary and manifests the opportunity to enhance the application of phytochemicals in the pharmaceutical industry.
References
Al-Dulaimi, A. F., M. Al-kotaji, and F. T. Abachi (2022). Co-Crystals For Improving Solubility And Bioavailability of Pharmaceutical Products. Egyptian Journal of Chemistry, 65(1); 81–89
Alippilakkotte, S. and L. Sreejith (2018). Pectin Mediated Synthesis of Curcumin Loaded Poly (Lactic Acid) Nanocapsules for Cancer Treatment. Journal of Drug Delivery Science and Technology, 48; 66–74
Andrés, S., M. L. Tejido, R. Bodas, L. Morán, N. Prieto, C. Blanco, and F. J. Giráldez (2013). Quercetin Dietary Supplementation of Fattening Lambs at 0.2% Rate Reduces Discolouration and Microbial Growth in Meat During Refrigerated Storage. Meat Science, 93(2); 207–212
Athiyah, U., P. A. Kusuma, T. Tutik, M. L. Lestari, D. Isadiartuti, D. P. Paramita, and D. Setyawan (2019). Crystal Engineering of Quercetin by Liquid Assisted Grinding Method. Jurnal Teknologi, 81(1); 39–45
Aytac, Z., S. I. Kusku, E. Durgun, and T. Uyar (2016). Quercetin/β-Cyclodextrin Inclusion Complex Embedded Nanofibres: Slow Release and High Solubility. Food Chemistry, 197; 864–871
B. Arnao, M. and J. Hernández-Ruiz (2018). The Potential of Phytomelatonin as a Nutraceutical. Molecules, 23(1); 238
Balan, P., G. Mal, S. Das, and H. Singh (2016). Synergistic and Additive Antimicrobial Activities of Curcumin, Manuka Honey and Whey Proteins. Journal of Food Biochemistry, 40(5); 647–654
Barzegar, A. (2016). Antioxidant Activity of Polyphenolic Myricetin in Vitro Cell-Free and Cell-Based Systems. Molecular Biology Research Communications, 5(2); 87
Batisai, E. (2021). Solubility Enhancement of Antidiabetic Drugs Using a Co-Crystallization Approach. Chemistry Open, 10(12); 1260–1268
Bhalekar, M. R., A. R. Madgulkar, P. S. Desale, and G. Marium (2017). Formulation of Piperine Solid Lipid Nanoparticles (SLN) for Treatment of Rheumatoid Arthritis. Drug Development and Industrial Pharmacy, 43(6); 1003–1010
Boksa, K., A. Otte, and R. Pinal (2014). Matrix Assisted Cocrystallization (MAC) Simultaneous Production and Formulation of Pharmaceutical Cocrystals by Hot Melt Extrusion. Journal of Pharmaceutical Sciences, 103(9); 2904–2910
Božič, M., S. Gorgieva, and V. Kokol (2012). Homogeneous and Heterogeneous Methods for Laccase Mediated Functionalization of Chitosan by Tannic Acid and Quercetin. Carbohydrate Polymers, 89(3); 854–864
Braxas, H., M. Rafraf, S. K. Hasanabad, and M. A. Jafarabadi (2019). Effectiveness of Genistein Supplementation on Metabolic Factors and Antioxidant Status in Postmenopausal Women with Type 2 Diabetes Mellitus. Canadian Journal of Diabetes, 43(7); 490–497
Buddhiranon, S. and T. Kyu (2012). Solubilization of Genistein in Poly (Oxyethylene) Through Eutectic Crystal Melting. The Journal of Physical Chemistry B, 116(27); 7795–7802
Chen, C. Y., W. Li, K. P. Qu, and C. R. Chen (2013a). Piperine Exerts Anti Seizure Effects via the TRPV1 Receptor in Mice. European Journal of Pharmacology, 714(1-3); 288–294
Chen, F., J. Peng, D. Lei, J. Liu, and G. Zhao (2013b). Optimization of Genistein Solubilization by κ-Carrageenan Hydrogel Using Response Surface Methodology. Food Science and Human Wellness, 2(4); 124-131
Chen, J., Y. Wu, J. Zou, and K. Gao (2016). α-Glucosidase Inhibition and Antihyperglycemic Activity of Flavonoids from Ampelopsis Grossedentata and the Flavonoid Derivatives. Bioorganic & Medicinal Chemistry, 24(7); 1488–1494
Chen, X., D. J. McClements, Y. Zhu, Y. Chen, L. Zou, W. Liu, C. Cheng, D. Fu, and C. Liu (2018). Enhancement of The Solubility, Stability and Bioaccessibility of Quercetin Using Protein Based Excipient Emulsions. Food Research International, 114; 30–37
Choi, H., J. S. Park, K. M. Kim, M. Kim, K. W. Ko, C. G. Hyun, J. W. Ahn, J. H. Seo, and S. Y. Kim (2018). Enhancing
The Antimicrobial Effect of Genistein by Biotransformation in Microbial System. Journal of Industrial and Engineering Chemistry, 63; 255–261
Clarke, H. D. (2012). Crystal Engineering of Multi-Component Crystal Forms: The Opportunities and Challenges in Design. University of South Florida
Coballase-Urrutia, E., J. Pedraza-Chaverri, N. Cárdenas-Rodríguez, B. Huerta-Gertrudis, M. E. García-Cruz, H. Montesinos-Correa, D. J. Sánchez-González, R. Camacho-Carranza, and J. J. Espinosa-Aguirre (2013). Acetonic and Methanolic Extracts of Heterotheca Inuloides, and Quercetin, Decrease CCl4 Oxidative Stress in Several Rat Tissues. Evidence-Based Complementary and Alternative Medicine, 2013; 1–13
Da Cruz, G. M. P., C. F. B. Felipe, F. A. Scorza, M. A. C. da Costa, A. F. Tavares, M. L. F. Menezes, G. M. de Andrade, L. K. A. Leal, G. A. C. Brito, and M. da Graça Naffah-Mazzacoratti (2013). Piperine Decreases Pilocarpine Induced Convulsions by GABAergic Mechanisms. Pharmacology Biochemistry and Behavior, 104; 144–153
Dal Magro, C., A. E. dos Santos, M. M. Ribas, G. P. Aguiar, C. R. Volfe, M. L. Lopes, A. M. Siebel, L. G. Müller, A. J. Bortoluzzi, and M. Lanza (2021). Production of Curcumin Resveratrol Cocrystal Using Cocrystallization with Supercritical Solvent. The Journal of Supercritical Fluids, 171; 105190
Danciu, C., C. Soica, M. Oltean, S. Avram, F. Borcan, E. Csanyi, R. Ambrus, I. Zupko, D. Muntean, and C. A. Dehelean (2014). Genistein in 1: 1 inclusion Complexes with Ramified Cyclodextrins: Theoretical, Physicochemical and Biological Evaluation. International Journal of Molecular Sciences, 15(2); 1962–1982
Dang, Y., G. Lin, Y. Xie, J. Duan, P. Ma, G. Li, and G. Ji (2014). Quantitative Determination of Myricetin in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and its Absolute Bioavailability. Drug Research, 64(10); 516–522
Daruházi, Á. E., T. Kiss, M. Vecsernyés, L. Szente, É. Szőke, and É. Lemberkovics (2013). Investigation of Transport of Genistein, Daidzein and Their Inclusion Complexes Prepared with Different Cyclodextrins on Caco-2 Cell Line. Journal of Pharmaceutical and Biomedical Analysis, 84; 112–116
Demir, Y., L. Durmaz, P. Taslimi, and İ. Gulçin (2019). Antidiabetic Properties of Dietary Phenolic Compounds: Inhibition Effects on α-Amylase, Aldose Reductase, and α-Glycosidase. Biotechnology and Applied Biochemistry, 66(5); 781–786
Dian, L., E. Yu, X. Chen, X. Wen, Z. Zhang, L. Qin, Q. Wang, G. Li, and C. Wu (2014). Enhancing Oral Bioavailability of Quercetin Using Novel Soluplus Polymeric Micelles. Nanoscale Research Letters, 9(1); 1–11
Egbuna, C., J. C. Ifemeje, S. C. Udedi, S. Kumar, and C. Press (2019). Phytochemistry: Fundamentals, Modern Techniques and Applications. CRC Press Taylor & Francis Group
Ezawa, T., Y. Inoue, S. Tunvichien, R. Suzuki, and I. Kanamoto (2016). Changes in The Physicochemical Properties of Piperine β -Cyclodextrin Due to The Formation of Inclusion Complexes. International Journal of Medicinal Chemistry, 2016; 1–9.
Franklin, S. J. and P. B. Myrdal (2015). Solid State and Solution Characterization of Myricetin. AAPS PharmSciTech, 16(6); 1400–1408
Gadade, D. D. and S. S. Pekamwar (2016). Pharmaceutical Cocrystals: Regulatory and Strategic Aspects, Design and Development. Advanced Pharmaceutical Bulletin, 6(4); 479 Gajda, M., K. P. Nartowski, J. Pluta, and B. Karolewicz (2019). Continuous, One Step Synthesis of Pharmaceutical Cocrystals via Hot Melt Extrusion from Neat to Matrix Assisted Processing State of the Art. International Journal of Pharmaceutics, 558; 426–440
Ghassemi-Rad, J., M. Maleki, A. F. Knickle, and D. W. Hoskin (2018). Myricetin Induced Oxidative Stress Suppresses Murine T Lymphocyte Activation. Cell Biology International, 42(8); 1069–1075
Gorgani, L., M. Mohammadi, G. D. Najafpour, and M. Nikzad (2017). Piperine The Bioactive Compound of Black Pepper: from Isolation to Medicinal Formulations. Comprehensive Reviews in Food Science and Food Safety, 16(1); 124–140
Guitard, R., J. F. Paul, V. Nardello-Rataj, and J. M. Aubry (2016). Myricetin, Rosmarinic and Carnosic Acids as Superior Natural Antioxidant Alternatives to α-Tocopherol for the Preservation of Omega-3 Oils. Food Chemistry, 213; 284–295
Guo, R. X., X. Fu, J. Chen, L. Zhou, and G. Chen (2016). Preparation and Characterization of Microemulsions of Myricetin for Improving its Antiproliferative and Antioxidative Activities and Oral Bioavailability. Journal of Agricultural and Food Chemistry, 64(32); 6286–6294
Hadi, K. (2015). Spray Drying of Cocrystals for Engineering Particle Properties: Diploma Work
Han, D., Z. Han, L. Liu, Y. Wang, S. Xin, H. Zhang, and Z. Yu (2020). Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study. International Journal of Molecular Sciences, 21(3); 766
Hasan, M., N. Belhaj, H. Benachour, M. Barberi-Heyob, C. Kahn, E. Jabbari, M. Linder, and E. Arab-Tehrany (2014). Liposome Encapsulation of Curcumin: Physico Chemical Characterizations and Effects on MCF7 Cancer Cell Proliferation. International Journal of Pharmaceutics, 461(1-2); 519–528
Incir, S., I. M. Bolayirli, O. Inan, M. S. Aydın, I. A. Bilgin, I. Sayan, M. Esrefoglu, and A. Seven (2016). The Effects of Genistein Supplementation on Fructose Induced Insulin Resistance, Oxidative Stress and Inflammation. Life Sciences, 158; 57–62
Jäger, R., R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, and J. M. Wilson (2014). Comparative Absorption of Curcumin Formulations. Nutrition Journal, 13(1); 1–8
Jaiswal, N., J. Akhtar, S. P. Singh, F. Ahsan, et al. (2019). An Overview on Genistein and its Various Formulations. Drug Research, 69(06); 305–313
Javanbakht, M. H., R. Sadria, M. Djalali, H. Derakhshanian, P. Hosseinzadeh, M. Zarei, G. Azizi, R. Sedaghat, and A. Mirshafiey (2014). Soy Protein and Genistein Improves Renal Antioxidant Status in Experimental Nephrotic Syndrome. Nefrologia, 34(4); 483–490
Jessica, A., R. Naura, U. Hasanah, E. Zaini, and L. Fitriani (2021). Pembentukan Multikomponen Kristal Piperin dan Kuersetin. JOPS (Journal Of Pharmacy and Science), 4(2); 1–11
Jiao, D., J. Wang, W. Lu, X. Tang, J. Chen, H. Mou, and Q. Y. Chen (2016). Curcumin Inhibited HGF Induced EMT and Angiogenesis Through Regulating c-Met Dependent PI3K/Akt/mTOR Signaling Pathways in Lung Cancer. Molecular Therapy-Oncolytics, 3; 16018
Kantatasiri, P. (2012). Future of Functional Foods and Nutraceutical Products: The Challenge and Potential of Thailand to ASEAN. GMSARN International Journal, 6(3); 87–96
Karagianni, A., M. Malamatari, and K. Kachrimanis (2018). Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics, 10(1); 18
Katherine, D. Nugroho, and A. K. Sugih (2018). Preparation and Characterization of Highly Water Soluble Curcumin Dextrose Cocrystal. The Journal of Pure and Applied Chemistry Research, 7(2); 140–148
Kharbanda, C., M. S. Alam, H. Hamid, K. Javed, S. Bano, Y. Ali, A. Dhulap, P. Alam, and M. Q. Pasha (2016). Novel Piperine Derivatives with Antidiabetic Effect as PPAR-γ Agonists. Chemical Biology & Drug Design, 88(3); 354-362
Kim, M. E., T. K. Ha, J. H. Yoon, and J. S. Lee (2014). Myricetin Induces Cell Death of Human Colon Cancer Cells via BAX/BCL2 Dependent Pathway. Anticancer Research, 34(2); 701–706
Kumar, S. (2018). Pharmaceutical Cocrystals: an Overview. Indian Journal of Pharmaceutical Sciences, 79(6); 858–871
Larson, A. J., J. D. Symons, and T. Jalili (2012). Therapeutic Potential of Quercetin to Decrease Blood Pressure: Review of Efficacy and Mechanisms. Advances in Nutrition, 3(1); 39–46
Lee, G. H., S. J. Lee, S. W. Jeong, H. C. Kim, G. Y. Park, S. G. Lee, and J. H. Choi (2016). Antioxidative and Antiinflammatory Activities of Quercetin Loaded Silica Nanoparticles. Colloids and Surfaces B: Biointerfaces, 143; 511–517
Lee, S. Y., K. H. Kim, I. K. Lee, K. H. Lee, S. U. Choi, and K. R. Lee (2012). A New Flavonol Glycoside from Hylomecon Vernalis. Archives of Pharmacal Research, 35(3); 415–421
Li, B., S. Konecke, K. Harich, L. Wegiel, L. S. Taylor, and K. J. Edgar (2013). Solid Dispersion of Quercetin in Cellulose Derivative Matrices Influences Both Solubility and Stability. Carbohydrate Polymers, 92(2); 2033–2040
Liu, M., C. Hong, G. Li, P. Ma, and Y. Xie (2016a). The Generation of Myricetin Nicotinamide Nanococrystals by Top Down and Bottom Up Technologies. Nanotechnology, 27(39); 395601
Liu, M., C. Hong, Y. Yao, H. Shen, G. Ji, G. Li, and Y. Xie (2016b). Development of a Pharmaceutical Cocrystal with Solution Crystallization Technology: Preparation, Characterization, and Evaluation of Myricetin Proline Cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 107; 151–159
Lombard, J., D. A. Haynes, and T. le Roex (2020). Assessment of Co Sublimation for The Formation of Multicomponent Crystals. Crystal Growth & Design, 20(12); 7840–7849
Ma, Z., G. Wang, L. Cui, and Q. Wang (2015). Myricetin Attenuates Depressant Like Behavior in Mice Subjected to Repeated Restraint Stress. International Journal of Molecular Sciences, 16(12); 28377–28385
Maciel, R., M. Costa, D. Martins, R. Franca, R. Schmatz, D. Graça, M. Duarte, C. Danesi, C. Mazzanti, and M. Schetinger (2013). Antioxidant and Anti Inflammatory Effects of Quercetin in Functional and Morphological Aterations in Streptozotocin Induced Diabetic Rats. Research in Veterinary Science, 95(2); 389–397
Maeno, Y., T. Fukami, M. Kawahata, K. Yamaguchi, T. Tagami, T. Ozeki, T. Suzuki, and K. Tomono (2014). Novel Pharmaceutical Cocrystal Consisting of Paracetamol and Trimethylglycine, a New Promising Cocrystal Former. International Journal of Pharmaceutics, 473(1-2); 179–186
Malik, P., R. Ameta, and M. Singh (2014). Preparation and Characterization of Bionanoemulsions for Improving and Modulating the Antioxidant Efficacy of Natural Phenolic Antioxidant Curcumin. Chemico Biological Interactions, 222; 77–86
Mao, Q. Q., Z. Huang, X. M. Zhong, Y. F. Xian, and S. P. Ip (2014). Brain Derived Neurotrophic Factor Signalling Mediates the Antidepressant Like Effect of Piperine in Chronically Stressed Mice. Behavioural Brain Research, 261; 140–145
Martinez-Perez, C., C. Ward, G. Cook, P. Mullen, D. McPhail, D. J. Harrison, and S. P. Langdon (2014). Novel Flavonoids as Anti Cancer Agents: Mechanisms of Action and Promise for Their Potential Application in Breast Cancer. Biochemical Society Transactions, 42(4); 1017–1023
McClements, D. (2012). Requirements for Food Ingredient and Nutraceutical Delivery Systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Elsevier; 3–18
Moretti, E., L. Mazzi, G. Terzuoli, C. Bonechi, F. Iacoponi, S. Martini, C. Rossi, and G. Collodel (2012). Effect of Quercetin, Rutin, Naringenin and Epicatechin on Lipid Peroxidation Induced in Human Sperm. Reproductive Toxicology, 34(4); 651–657
Naldi, M., J. Fiori, M. Pistolozzi, A. F. Drake, C. Bertucci, R. Wu, K. Mlynarczyk, S. Filipek, A. De Simone, and V. Andrisano (2012). Amyloid β Peptide 25–35 Self Assembly and its Inhibition: a Model Undecapeptide System to Gain Atomistic and Secondary Structure Details of The Alzheimer’s Disease Process and Treatment. ACS Chemical Neuroscience, 3(11); 952–962
Nascimento, A. L., R. P. Fernandes, M. D. Charpentier, J. H. ter Horst, F. J. Caires, and M. Chorilli (2021). Co Crystals of Non Steroidal Anti Inflammatory Drugs (NSAIDs): Insight Toward Formation, Methods, and Drug Enhancement. Particuology, 58; 227–241
Nguyen, T. T. H., H. J. Woo, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia, and D. Kim (2012). Flavonoid Mediated Inhibition of SARS Coronavirus 3C Like Protease Expressed in Pichia Pastoris. Biotechnology Letters, 34(5); 831–838
Nguyen, T. T. H., S. H. Yu, J. Kim, E. An, K. Hwang, J. S. Park, and D. Kim (2015). Enhancement of Quercetin Water Solubility with Steviol Glucosides and The Studies of Biological Properties. Functional Foods in Health and Disease, 5(12); 437–449
Nwosu, O. K. and K. I. Ubaoji (2020). Nutraceuticals: History, Classification and Market Demand. In Functional Foods and Nutraceuticals. Springer; 13–22
Ouyang, D. y., L. H. Zeng, H. Pan, L. H. Xu, Y. Wang, K. P. Liu, and X. H. He (2013). Piperine Inhibits the Proliferation of Human Prostate Cancer Cells via Induction of Cell Cycle Arrest and Autophagy. Food and Chemical Toxicology, 60; 424–430
Pachauri, M., E. D. Gupta, and P. C. Ghosh (2015). Piperine Loaded PEG-PLGA Nanoparticles: Preparation, Characterization and Targeted Delivery for Adjuvant Breast Cancer Chemotherapy. Journal of Drug Delivery Science and Technology, 29; 269–282
Pal, R., S. Panigrahi, D. Bhattacharyya, and A. S. Chakraborti (2013). Characterization of Citrate Capped Gold Nanoparticl Equercetin Complex: Experimental and Quantum Chemical Approach. Journal of Molecular Structure, 1046; 153–163
Pan, K., Q. Zhong, and S. J. Baek (2013). Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. Journal of Agricultural and Food Chemistry, 61(25); 6036–6043
Pandit, R. S., S. C. Gaikwad, G. A. Agarkar, A. K. Gade, and M. Rai (2015). Curcumin Nanoparticles: Physico-Chemical Fabrication and its in Vitro Efficacy Against Human Pathogens. 3 Biotech, 5(6); 991–997
Pang, W., Y. Wu, N. Xue, Y. Li, S. Du, B. He, C. Yang, J. Wang, and Y. Zeng (2019). Retracted: Cocrystals of Curcumin-Isonicotinamide and Curcumin-Gallic Acid: Does The Weak Forces in Cocrystals Effect on Binding Profiles with BSA and Cell Cytotoxicity?
Pantwalawalkar, J., H. More, D. Bhange, U. Patil, and N. Jadhav (2021). Novel Curcumin Ascorbic Acid Cocrystal for Improved Solubility. Journal of Drug Delivery Science and Technology, 61; 102233
Qian, J., H. Meng, L. Xin, M. Xia, H. Shen, G. Li, and Y. Xie (2017). Self Nanoemulsifying Drug Delivery Systems of Myricetin: Formulation Development, Characterization, and in Vitro and in Vivo Evaluation. Colloids and Surfaces B: Biointerfaces, 160; 101–109
Quilaqueo, M., S. Millao, I. Luzardo-Ocampo, R. Campos-Vega, F. Acevedo, C. Shene, and M. Rubilar (2019). Inclusion of Piperine in β Cyclodextrin Complexes Improves Their Bioaccessibility and in Vitro Antioxidant Capacity. Food Hydrocolloids, 91; 143–152
Quiñones, J. P., H. Peniche, and C. Peniche (2018). Chitosan Based Self Assembled Nanoparticles in Drug Delivery. Polymers, 10(3); 235
Ramezani, M., N. Darbandi, F. Khodagholi, and A. Hashemi (2016). Myricetin Protects Hippocampal CA3 Pyramidal Neurons and Improves Learning and Memory Impairments in Rats with Alzheimer’s Disease. Neural Regeneration Research, 11(12); 1976
Rao, R. V., O. Descamps, V. John, and D. E. Bredesen (2012). Ayurvedic Medicinal Plants for Alzheimer’s Disease: a Review. Alzheimer’s Research & Therapy, 4(3); 1–9
Rathi, N., A. Paradkar, and V. G. Gaikar (2019). Polymorphs of Curcumin and its Cocrystals with Cinnamic Acid. Journal of Pharmaceutical Sciences, 108(8); 2505–2516
Raza, S. A., U. Schacht, V. Svoboda, D. P. Edwards, A. J. Florence, C. R. Pulham, J. Sefcik, and I. D. Oswald (2018). Rapid Continuous Antisolvent Crystallization of Multicomponent Systems. Crystal Growth & Design, 18(1); 210–218
Ren, T., M. Hu, Y. Cheng, T. L. Shek, M. Xiao, N. J. Ho, C. Zhang, S. S. Y. Leung, and Z. Zuo (2019). Piperine Loaded Nanoparticles with Enhanced Dissolution and Oral Bioavailability for Epilepsy Control. European Journal of Pharmaceutical Sciences, 137; 104988
Ren, Z., P. Yan, L. Zhu, H. Yang, Y. Zhao, B. P. Kirby, J. L. Waddington, and X. Zhen (2018). Dihydromyricetin Exerts a Rapid Antidepressant Like Eect in Association with Enhancement of BDNF Expression and Inhibition of Neuroinflammation. Psychopharmacology, 235(1); 233–244
Ribas, M. M., G. P. S. Aguiar, L. G. Muller, A. M. Siebel, M. Lanza, and J. V. Oliveira (2019). Curcumin Nicotinamide Cocrystallization with Supercritical Solvent (CSS): Synthesis, Characterization and in Vivo Antinociceptive and Anti Inflammatory Activities. Industrial Crops and Products, 139; 111537
Roy, L., M. Lipert, and N. Rodriguez-Hornedo (2012). Cocrystal Solubility and Thermodynamic Stability. Pharmaceutical Salts and Co-crystals; 247–279
Salama, S. M., M. A. Abdulla, A. S. AlRashdi, S. Ismail, S. S. Alkiyumi, and S. Golbabapour (2013). Hepatoprotective Effect of Ethanolic Extract of Curcuma Longa on Thioacetamide Induced Liver Cirrhosis in Rats. BMC Complementary and Alternative Medicine, 13(1); 1–17
Salsabila, H., L. Fitriani, and E. Zaini (2021). Recent Strategies for Improving Solubility and Oral Bioavailability of Piperine. Int. J. Appl. Pharm, 13(4); 31–39
Sathisaran, I. and S. V. Dalvi (2017). Crystal Engineering of Curcumin with Salicylic Acid and Hydroxyquinol as Coformers. Crystal Growth & Design, 17(7); 3974–3988
Savjani, J. K. (2015). Co†Crystallization: An Approach to Improve the Performance Characteristics of Active Pharmaceutical Ingredients. Asian Journal of Pharmaceutics (AJP), 9(3); 147–151
Seo, J. A., B. Kim, D. N. Dhanasekaran, B. K. Tsang, and Y. S. Song (2016). Curcumin Induces Apoptosis by Inhibiting Sarco/Endoplasmic Reticulum Ca2+ ATPase activity in Ovarian Cancer Cells. Cancer Letters, 371(1); 30–37
Setyawan, D., A. A. Fadhil, D. Juwita, H. Yusuf, and R. Sari (2017). Enhancement of Solubility and Dissolution Rate of Quercetin with Solid Dispersion System Formation Using Hydroxypropyl Methyl Cellulose Matrix. Thai Journal of Pharmaceutical Sciences, 41(3); 112–116
Setyawan, D., S. A. Permata, A. Zainul, and M. L. A. D. Lestari (2018). Improvement in Vitro Dissolution Rate of Quercetin Using Cocrystallization of Quercetin Malonic Acid. Indonesian Journal of Chemistry, 18(3); 531–536
Silva, L. F. C., G. Kasten, C. E. M. de Campos, A. L. Chinelatto, and E. Lemos-Senna (2013). Preparation and Characterization of Quercetin Loaded Solid Lipid Microparticles for Pulmonary Delivery. Powder Technology, 239; 183–192
Sowa, M., K. Ślepokura, and E. Matczak-Jon (2013a). A 1: 2 Cocrystal of Genistein with Isonicotinamide: Crystal Structure and Hirshfeld Surface Analysis. Acta Crystallographica Section C: Crystal Structure Communications, 69(11); 1267–1272
Sowa, M., K. Ślepokura, and E. Matczak-Jon (2013b). Cocrystals of Fisetin, Luteolin and Genistein with Pyridinecarboxamide Coformers: Crystal Structures, Analysis of Intermolecular Interactions, Spectral and Thermal Characterization. CrystEngComm, 15(38); 7696–7708
Sowa, M., K. Ślepokura, and E. Matczak-Jon (2014a). A 1: 1 Pharmaceutical Cocrystal of Myricetin in Combination with Uncommon Piracetam Conformer: X-Ray Single Crystal Analysis and Mechanochemical Synthesis. Journal of Molecular Structure, 1058; 114–121
Sowa, M., K. Ślepokura, and E. Matczak-Jon (2014b). Solid State Characterization and Solubility of a Genistein Caffeine Cocrystal. Journal of Molecular Structure, 1076; 80–88
Stasiłowicz, A., N. Rosiak, E. Tykarska, M. Kozak, J. Jenczyk, P. Szulc, J. Kobus-Cisowska, K. Lewandowska, A. Płazińska, and W. Płaziński (2021). Combinations of Piperine with Hydroxypropyl-β -Cyclodextrin as a Multifunctional System. International Journal of Molecular Sciences, 22(8); 4195
Sun, F., Z. Zheng, J. Lan, X. Li, M. Li, K. Song, and X. Wu (2019). New Micelle Myricetin Formulation for Ocular Delivery: Improved Stability, Solubility, and Ocular Anti Inflammatory Treatment. Drug Delivery, 26(1); 575-585
Thayyil, A. R., T. Juturu, S. Nayak, and S. Kamath (2020). Pharmaceutical Co-crystallization: Regulatory Aspects, Design, Characterization, and Applications. Advanced Pharmaceutical Bulletin, 10(2); 203
Thenmozhi, K. and Y. J. Yoo (2017). Enhanced Solubility of Piperine Using Hydrophilic Carrier-Based Potent Solid Dispersion Systems. Drug Development and Industrial Pharmacy, 43(9); 1501–1509
Thong-Ngam, D., S. Choochuai, S. Patumraj, M. Chayanupatkul, and N. Klaikeaw (2012). Curcumin Prevents Indomethacin Induced Gastropathy in Rats. World Journal of Gastroenterology: WJG, 18(13); 1479
Toyoda, T., L. Shi, S. Takasu, Y. M. Cho, Y. Kiriyama, A. Nishikawa, K. Ogawa, M. Tatematsu, and T. Tsukamoto (2016). Anti-inammatory Eects of Capsaicin and Piperine on Helicobacter Pylori-Induced Chronic Gastritis in Mongolian gerbils. Helicobacter, 21(2); 131–142
Wu, N., Y. Zhang, J. Ren, A. Zeng, and J. Liu (2020). Preparation of Quercetin Nicotinamide Cocrystals and Their Evaluation Under in Vivo and in Vitro Conditions. RSC Advances, 10(37); 21852–21859
Wu, T., X. Zang, M. He, S. Pan, and X. Xu (2013). Structure Activity Relationship of Flavonoids on Their Anti-Escherichia Coli Activity and Inhibition of DNA Gyrase. Journal of Agricultural and Food Chemistry, 61(34); 8185–8190
Yaffe, P. B., M. R. Power Coombs, C. D. Doucette, M. Walsh, and D. W. Hoskin (2015). Piperine, an Alkaloid from Black Pepper, Inhibits Growth of Human Colon Cancer Cells via G1 Arrest and Apoptosis Triggered by Endoplasmic Reticulum Stress. Molecular Carcinogenesis, 54(10); 1070–1085
Yan, Y., J. M. Chen, and T. B. Lu (2013). Simultaneously Enhancing the Solubility and Permeability of Acyclovir by Crystal Engineering Approach. CrystEngComm, 15(33); 6457–6460
Yang, D., J. Cao, L. Jiao, S. Yang, L. Zhang, Y. Lu, and G. Du (2020). Solubility and Stability Advantages of a New Cocrystal of Berberine Chloride with Fumaric Acid. ACS Omega, 5(14); 8283–8292
Yang, Z. J., H. R. Wang, Y. L. Wang, Z. H. Zhai, L. W. Wang, L. Li, C. Zhang, and L. Tang (2019). Myricetin Attenuated Diabetes Associated Kidney Injuries and Dysfunction via Regulating Nuclear Factor (Erythroid Derived 2) Like 2 and Nuclear Factor-κB Signaling. Frontiers in Pharmacology, 10; 647
Ying, H. Z., Y. H. Liu, B. Yu, Z. Y. Wang, J. N. Zang, and C. H. Yu (2013). Dietary Quercetin Ameliorates Nonalcoholic Steatohepatitis Induced by a High Fat Diet in Gerbils. Food and Chemical Toxicology, 52; 53–60
Yu, M. S., J. Lee, J. M. Lee, Y. Kim, Y. W. Chin, J. G. Jee, Y. S. Keum, and Y. J. Jeong (2012). Identication of Myricetin and Scutellarein as Novel Chemical Inhibitors of The SARS Coronavirus Helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12); 4049–4054
Yusof, Y., C. Etti, and N. Chin (2015). Development of Nutraceutical Product. International Journal on Advanced Science, Engineering and Information Technology, 5(3); 50–5
Zaini, E., L. Fitriani, F. Ismed, A. Horikawa, and H. Uekusa (2020a). Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Scientia Pharmaceutica, 88(2); 21
Zaini, E., L. Fitriani, R. Y. Sari, H. Rosaini, A. Horikawa, and H. Uekusa (2019). Multicomponent Crystal of Mefenamic Acid and N-Methyl-D-Glucamine: Crystal Structures and Dissolution Study. Journal of Pharmaceutical Sciences, 108(7); 2341–2348
Zaini, E., D. Riska, M. D. Oktavia, F. Ismed, and L. Fitriani (2020b). Improving Dissolution Rate of Piperine by Multicomponent Crystal Formation with Saccharin. Research Journal of Pharmacy and Technology, 13(4); 1926–1930
Zarai, Z., E. Boujelbene, N. B. Salem, Y. Gargouri, and A. Sayari (2013). Antioxidant and Antimicrobial Activities of Various Solvent Extracts, Piperine and Piperic Acid from Piper Nigrum. Lwt Food Science and Technology, 50(2); 634–641
Zhai, W. J., Z. B. Zhang, N. N. Xu, Y. F. Guo, C. Qiu, C. Y. Li, G. Z. Deng, and M. Y. Guo (2016). Piperine Plays an Antiinflammatory Role in Staphylococcus Aureus Endometritis by Inhibiting Activation of NF-κB and MAPK Pathways in Mice. Evidence-Based Complementary and Alternative Medicine, 2016; 1–10
Zhang, W., X. Li, T. Ye, F. Chen, X. Sun, J. Kong, X. Yang, W. Pan, and S. Li (2013). Design, Characterization, and in Vitro Cellular Inhibition and Uptake of Optimized Genistein-Loaded NLC for The Prevention of Posterior Capsular Opacification Using Response Surface Methodology. International Journal of Pharmaceutics, 454(1); 354–366
Zhang, Y. N., H. M. Yin, Y. Zhang, D. J. Zhang, X. Su, and H. X. Kuang (2017a). Cocrystals of Kaempferol, Quercetin and Myricetin with 4, 4’-Bipyridine: Crystal Structures, Analyses of Intermolecular Interactions and Antibacterial Properties. Journal of Molecular Structure, 1130; 199–207
Zhang, Y. N., H. M. Yin, Y. Zhang, D. J. Zhang, X. Su, and H. X. Kuang (2017b). Preparation of a 1: 1 Cocrystal of Genistein with 4, 4’-Bipyridine. Journal of Crystal Growth, 458; 103–109
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.