Numerical Study of Early Detection of Tuberculosis Infected with High Sensitivity Plasmonic Sensor
Abstract
In this work, a photonic crystal fiber based on a plasmonic sensor for the early detection of tuberculosis has been designed with finite element analysis. The component is constructed with a substrate layer made of fused silica material, which is then coated with a thin film of TiO2 layer as an adhesive layer to strongly attach the Au layer with the silica fiber surface. The TiO2 layer has an optimal thickness of 45 nm, while the Au layer has a thickness of 50 nm. The sensor design has a refractive index (RI) detection range from 1.27 RIU to 1.37 RIU, it also shows a maximum wavelength sensitivity (WS), maximum amplitude sensitivity (AS), sensor resolution (SR), and sensor accuracy (SA) of 20,000 nm/RIU (x-polarized) and 17.000 nm/RIU( y-polarized), -211.38 1/RIU (x-polarized) and -211.211 1/RIU (y-polarized), 9.17 x 10−5 RIU (x-polarized) and 1 x 10−4 RIU (y-polarized), and 0.025/nm respectively. Tuberculosis exhibits a normal and infected RI range of 1.343 RIU to 1.351 RIU. Therefore, the proposed sensor design is capable of detecting four types of TB infections with high sensitivity.
References
Aly, A. H., D. Mohamed, Z. Zaky, Z. Matar, N. Abd El-Gawaad, A. Shalaby, F. Tayeboun, and M. Mohaseb (2021). Novel Biosensor Detection of Tuberculosis Based on Photonic Band Gap Materials. Materials Research, 24
Brixner, B. (1967). Refractive-index Interpolation for Fused Silica. JOSA, 57(5); 674–676
Chen, W., C. Liu, X. Liu, Y. Feng, H. Liang, T. Shen, and W. Han (2023). Photonic Crystal Fiber Refractive Index Sensor Based on Spr. Optical and Quantum Electronics, 55(2); 134
Datta, B., A. K. Prakash, D. Ford, P. K. Tanwar, P. Goyal, P. Chatterjee, S. Vipin, A. Jaiswal, N. Trehan, and K. Ayyagiri (2019). Comparison of Clinical and Cost-effectiveness of Two Strategies Using Mobile Digital X-ray to Detect Pulmonary Tuberculosis in Rural India. BMC Public Health, 19; 1–8
Eid, M. M., A. N. Z. Rashed, A. A.-M. Bulbul, and E. Podder (2021). Mono-rectangular Core Photonic Crystal Fiber (mrcpcf) for Skin and Blood Cancer Detection. Plasmonics, 16; 717–727
Falah, A. A. S., W. R. Wong, and F. R. M. Adikan (2022). Single-mode Eccentric-core D-shaped Photonic Crystal Fiber Surface Plasmon Resonance Sensor. Optics & Laser Technology, 145; 107474
Geneva (2023). Strategic and Technical Advisory Group for Tuberculosis (STAG-TB): report of the 22nd meeting, Geneva, Switzerland, 6–8 June 2022. World Health Organization
Gu, S., W. Sun, M. Li, Z. Li, X. Nan, Z. Feng, and M. Deng (2022). Simultaneous Measurement of Magnetic Field and Temperature Based on Photonic Crystal Fiber Plasmonic Sensor with Dual-polarized Modes. Optik, 259; 169030
Han, B., Y. n. Zhang, E. Siyu, X. Wang, D. Yang, T. Wang, K. Lu, and F. Wang (2019). Simultaneous Measurement of Temperature and Strain Based on Dual Spr Effect in Pcf. Optics & Laser Technology, 113; 46–51
Irawan, D., K. Ramadhan, and A. Azhar (2022a). Design of PCF-SPR for Early Detection of Skin Cancer Infected Cells. Jurnal Penelitian Pendidikan IPA, 8(5); 2293–2298
Irawan, D., K. Ramadhan, F. Fitmawati, D. Hanto, and B. Widiyatmoko (2022b). High-performance of Starphotonics Crystal Fiber Based on Surface Plasmon Resonance Sensor. Indian Journal of Pure & Applied Physics (IJPAP), 60(9); 727–733
Irawan, D., K. Ramadhan, S. Saktioto, F. Fitmawati, D. Hanto, and B. Widiyatmoko (2022c). Hexagonal Two Layers-photonics Crystal Fiber Based on Surface Plasmon Resonance with Gold Coating Biosensor Easy to Fabricate. Indonesian Journal of Electrical Engineering and Computer Science, 28(1); 146
Irawan, D., K. Ramadhan, S. Saktioto, and A. Marwin (2022d). Performance Comparison of Topas Chirped Fiber Bragg Grating Sensor with Tanh and Gaussian Apodization. Indonesian Journal of Electrical Engineering and Computer Science, 26(3); 1477–1485
Jabin, M. A., K. Ahmed, M. J. Rana, B. K. Paul, M. Islam, D. Vigneswaran, and M. S. Uddin (2019). Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection. IEEE Photonics Journal, 11(4); 1–10
Johnson, P. B. and R.-W. Christy (1972). Optical Constants of the Noble Metals. Physical review B, 6(12); 4370
Kumar, A., P. Verma, and P. Jindal (2023). Surface Plasmon Resonance Sensor Based on Mxene Coated Pcf for Detecting the Cancer Cells with Machine Learning Approach. Microelectronic Engineering, 267; 111897
Li, Z., W. Hou, J. Hong, C. Fan, Y. Wei, Z. Liu, X. Lei, Y. Qiao, O. P. Hasekamp, and G. Fu (2022). The Polarization Crossfire (pcf) Sensor Suite Focusing on Satellite Remote Sensing of Fine Particulate Matter Pm2. 5 from Space. Journal of Quantitative Spectroscopy and Radiative Transfer, 286; 108217
Liu, Q., Z. Ma, Q. Wu, and W. Wang (2020). The Biochemical Sensor Based on Liquid-core Photonic Crystal Fiber Filled with Gold, Silver and Aluminum. Optics & Laser Technology, 130; 106363
Mahfuz, M. A., M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, and F. Ahmed (2019). A Bimetallic coated, Low Propagation Loss, Photonic Crystal Fiber Based Plasmonic Refractive Index Sensor. Sensors, 19(17); 3794
Matsui, T., J. Zhou, K. Nakajima, and I. Sankawa (2005). Dispersion-flattened Photonic Crystal Fiber with Large Effective Area and Low Confinement Loss. Journal of Lightwave Technology, 23(12); 4178–4183
Mohammed, N. A., O. E. Khedr, E. S. M. El Rabaie, and A. A. Khalaf (2023). High-Sensitivity Early Detection Biomedical Sensor for Tuberculosis With Low Losses in the Terahertz Regime Based on Photonic Crystal Fiber Technology. Photonic Sensors, 13(2); 230202
Otupiri, R., E. K. Akowuah, and S. Haxha (2015). Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Optics express, 23(12); 15716–15727
Pan, F., A. Zhang, H. Pan, and C. Cao (2022). High Sensitivity Surface Plasmon Resonance Sensor Based on D-shaped High Birefringence Photonic Crystal Fibre. Journal of Modern Optics, 69(10); 575–582
Panda, A. and P. D. Pukhrambam (2022). Study of Metal-porous Gan-based 1d Photonic Crystal Tamm Plasmon Sensor for Detection of Fat Concentrations in Milk. Lecture Notes in Electrical Engineering; 415–425
Parmar, J., S. K. Patel, V. Katkar, and A. Natesan (2022). Graphene-based Refractive Index Sensor Using Machine Learning for Detection of Mycobacterium Tuberculosis Bacteria. IEEE Transactions on NanoBioscience, 22(1); 92–98
Rahaman, M. E., M. B. Hossain, and H. S. Mondal (2022). Effect of Background Materials in Photonic Crystal Fiber Sensor. Optical Review; 1–6
Rahman, M. M., F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam (2020). Photonic Crystal Fiber Based Terahertz Sensor for Cholesterol Detection in Human Blood and Liquid Foodstuffs. Sensing and Bio-Sensing Research, 29; 100356
Ramanujam, N., S. K. Patel, N. M. Reddy, S. A. Taya, D. Vigneswaran, and M. M. Rajan (2020). One-dimensional Ring Mirror-defect Photonic Crystal for Detection of Mycobacterium Tuberculosis Bacteria. Optik, 219; 165097
Ramola, A., A. Marwaha, and S. Singh (2021). Design and Investigation of a Dedicated Pcf Spr Biosensor for Cancer Exposure Employing External Sensing. Applied Physics A, 127(9); 643
Rifat, A. A., G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. Sua, Y. Shee, and F. M. Adikan (2015). Copper-graphene-based Photonic Crystal Fiber Plasmonic Biosensor. IEEE Photonics Journal, 8(1); 1–8
Sarker, H. and M. Faisal (2023). Surface Plasmon Resonance Sensor Using Photonic Crystal Fiber for Sucrose Detection. Sensing and Bio-Sensing Research, 39; 100544
Sehmi, H., W. Langbein, and E. Muljarov (2017). Optimizing the Drude-lorentz Model for Material Permittivity: Method, Program, and Examples for Gold, Silver, and Copper. Physical Review B, 95(11); 115444
Sellmeier (1871). Zur Erklärung Der Abnormen Farbenfolge Im Spectrum Einiger Substanzen. Annalen der physik, 219(6); 272–282
Sen, S., M. Abdullah Al Shafi, A. S. Sikder, M. S. Hossain, and M. M. Azad (2021). Zeonex Based Decagonal Photonic Crystal Fiber (d-pcf) in the Terahertz (thz) Band for Chemical Sensing Applications. Sensing and Bio-Sensing Research, 31; 100393
Shakya, A. K. and S. Singh (2022). Design of novel Penta core PCF SPR RI sensor based on fusion of IMD and EMD techniques for analysis of water and transformer oil. Measurement, 188; 110513
Singh, S. and Y. Prajapati (2020). TiO2/gold-graphene Hybrid Solid Core Spr Based Pcf Ri Sensor for Sensitivity Enhancement. Optik, 224; 165525
Singh, Y. and S. K. Raghuwanshi (2021). Titanium Dioxide (TiO2) Coated Optical Fiber-based Spr Sensor in Near-infrared Region with Bimetallic Structure for Enhanced Sensitivity. Optik, 226; 165842
Taya, S. A., M. G. Daher, I. Colak, and O. M. Ramahi (2021). Highly Sensitive Nano-sensor Based on a Binary Photonic Crystal for the Detection of Mycobacterium Tuberculosis Bacteria. Journal of Materials Science: Materials in Electronics, 32; 28406–28416
Tosi, D., S. Poeggel, I. Iordachita, and E. Schena (2018). Fiber Optic Sensors for Biomedical Applications. Opto-Mechanical Fiber Optic Sensors: Research, Technology, and Applications in Mechanical Sensing; 301–333
Wu, Q.-l., Y. Zhao, Y.-n. Zhang, and Y. Yang (2021). Characteristics of a New Multi-channel Sensing Device Based on C-type Photonic Crystal Fibers. Optics & Laser Technology, 134; 106622
Yan, X., Z. Guo, T. Cheng, and S. Li (2020). A Novel Goldcoated Pcf Polarization Filter Based on Surface Plasmon Resonance. Optics & Laser Technology, 126; 106125
Yang, H., M. Liu, Y. Chen, L. Guo, G. Xiao, H. Liu, J. Li, and L. Yuan (2021). Highly Sensitive Graphene-au Coated Plasmon Resonance Pcf Sensor. Sensors, 21(3); 818
Zaki, S. E., A. Mehaney, and A. H. Aly (2022). Novel Highly-sensitive Heavy Metals Sensor-based 1d Phononic Crystal for NiCl2 Detection. Optical and Quantum Electronics, 54(12); 811
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.