High Sensitivity CH4 and CO2 Gas Sensor Using Fiber Bragg Grating Coated with Single Layer Graphene

Dedi Irawan, Saktioto, Dwi Hanto, Bambang Widiyatmoko, Sutoyo

Abstract

This article outlines the development of a Fiber Bragg Grating (FBG) intended for use as a sensor for CH4 and CO2 gases. Following fabrication, the FBG was effectively treated with a layer of Graphene Material through a modified RF Sputtering process. This coating procedure involved introducing argon gas into the chamber and subjecting the FBG, securely held by two vacuum stages, to a temperature range of 27°C to 600°C by adjusting the power supplied to the cathode and anode, ranging from 0 to 125 Watts. Subsequently, the FBG was employed as a key sensing element within an experimental setup aimed at measuring gas concentrations within a confined space. The assessment involved analyzing the reflected signal of the FBG using an Optical Interrogator System, which demonstrated a shift in the Bragg wavelength of the reflected signal corresponding to varying gas concentrations. This study indicates promising outcomes for the Graphene-coated FBG as a gas sensor. The sensor’s sensitivity was evaluated based on the Bragg wavelength shift resulting from gas presence within the chamber. The Graphene-coated FBG exhibited sensitivities of 3.3 ppm for CH4 and 3.7 ppm for CO2, surpassing those reported in prior research efforts.

References

Abdali, H., B. Heli, and A. Ajji (2019). Stable and Sensitive Amino-Functionalized Graphene/Polyaniline Nanofiber Composites for Room-Temperature Carbon Dioxide Sensing. RSC Advances, 9(70); 41240–41247

Alberto, N., C. Vigario, D. Duarte, N. A. F. Almeida, G. Gonçalves, J. L. Pinto, P. A. A. P. Marques, R. Nogueira, and V. Neto (2015). Characterization of Graphene Oxide Coatings onto Optical Fibers for Sensing Applications. Materials Today: Proceedings, 2(1); 171–177

Ameloot, R., F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels, and D. E. De Vos (2011). Interfacial Synthesis of Hollow Metal-Organic Framework Capsules Demonstrating Selective Permeability. Nature Chemistry, 3(5); 382–387

Besson, J.-P., S. Schilt, and L. Thévenaz (2006). Sub-Ppm Multi-Gas Photoacoustic Sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(5); 899–904

Gao, X. G., L. X. Cheng, W. S. Jiang, X. K. Li, and F. Xing (2021). Graphene and Its Derivatives-Based Optical Sensors. Frontiers in Chemistry, 9; 615164

Halstuch, A. and A. A. Ishaaya (2023). Femtosecond Inscription of a Fiber Bragg Grating Spectral Array in the Same Spatial Location. Sensors, 8; 4064

Hernaez, M., C. R. Zamarreño, S. Melendi-Espina, L. R. Bird, A. G. Mayes, and F. J. Arregui (2017). Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors (Switzerland), 17(1); 155

Huang, J., S. Virji, B. H. Weiller, and R. B. Kaner (2003). Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. Journal of the American Chemical Society, 125(2); 314–315.

Irawan, D., Azhar, K. Ramadhan, A. Marwin, and A. Marwan (2024). Numerical Study of Early Detection of Tuberculosis Infected with High Sensitivity Plasmonic Sensor. Science and Technology Indonesia, 9(1); 94–102

Jiang, Y. (2022). Application of Optical Fiber Sensing Technology in Bridge Detection. Highlights in Science, Engineering and Technology, 9; 111–114

Kersey, A. D. (1996). A Review of Recent Developments in Fiber Optic Sensor Technology. Optical Fiber Technology, 2(3); 291–317

Mao, X., X. Zhou, Z. Gong, and Q. Yu (2016). An All-Optical Photoacoustic Spectrometer for Multi-Gas Analysis. Sensors and Actuators B: Chemical, 232; 251–256

Measures, R. and S. Abrate (2002). Structural Monitoring with Fiber Optic Technology. Applied Mechanics Reviews, 5(1); 10

Munir, M. A., K. H. Badri, L. Y. Heng, and S. Ibrahim (2020). Biogenic Amines Detection by Chromatography and Sensor Methods: A Comparative Review. Science and Technology Indonesia, 5(4); 90–110

Papageorgiou, D. G., I. A. Kinloch, and R. J. Young (2017). Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Progress in Materials Science, 90; 75–127

Qiao, H., Z. Lin, X. Sun, W. Li, Y. Zhao, and C. Guo (2023). Fiber Optic-Based Durability Monitoring in Smart Concrete: A State-of-Art Review. Sensors, 23(18); 7810

Ramadhan, K., D. Irawan, and A. Azhar (2022). Optimum Design Sapphire-Fiber Bragg Grating for High-Temperature Sensing. Jurnal Penelitian Pendidikan IPA, 8(3); 1361–1367

Riza, M. A., Y. I. Go, S. W. Harun, and R. R. J. Maier (2020). FBG Sensors for Environmental and Biochemical Applications - A Review. IEEE Sensors Journal, 20(14); 7614–7627

Saktioto, T., K. Ramadhan, Y. Soerbakti, R. F. Syahputra, D. Irawan, and Okfalisa (2021). Apodization Sensor Performance for TOPAS Fiber Bragg Grating. Telkomnika (Telecommunication Computing Electronics and Control), 19(6); 1982–1991

Satria, E., M. Febrina, M. Djamal, W. Srigutomo, and M. Liess (2022). CO2 Thermal Conductivity Detection in Gas Mixture for Concentration Measurement Using Bridge Configuration of Thermopiles. Science and Technology Indonesia, 7(4); 443–448

Shang, Y. and C. Wang (2021). Review of Distributed Optical Fiber Sensing Technology. Yingyong Kexue Xuebao/Journal of Applied Sciences, 39(5); 843–857

Shen, B., F. Zhang, L. Jiang, X. Liu, X. Song, X. Qin, and X. Li (2021). Improved Sensing Properties of Thermal Conductivity-Type CO2 Gas Sensors by Loading Multi-Walled Carbon Nanotubes into Nano-Al2O3 Powders. Frontiers in Energy Research, 9; 1–11

Song, S., L. Li, J. Chen, N. Zhong, Y. Liu, Y. He, H. Chang, B. Wan, D. Zhong, Y. Liu, and Q. Xie (2024). Fiber Bragg Grating Sensor for Accurate and Sensitive Detection of Carbon Dioxide Concentration. Sensors and Actuators B: Chemical, 404; 135264

Stasiewicz, K. A., I. Jakubowska, J. Moś, R. Kosturek, and K. Kowiorski (2023). In-Line Gas Sensor Based on the Optical Fiber Taper Technology with a Graphene Oxide Layer. Electronics (Switzerland), 12(4); 830

Syuhada, A., M. S. Shamsudin, S. Daud, G. Krishnan, S. W. Harun, and M. S. A. Aziz (2021). Single-Mode Modified Tapered Fiber Structure Functionalized with GO-PVA Composite Layer for Relative Humidity Sensing. Photonic Sensors, 11; 314–324

Wang, H., L. Jiang, and P. Xiang (2018). Improving the Durability of the Optical Fiber Sensor Based on Strain Transfer Analysis. Optical Fiber Technology, 42; 97–104

Wu, X., Y. Du, S. Shi, C. Jiang, X. Deng, S. Zhu, X. Jin, and J. Li (2022). Simultaneous Detection of CO2 and CH4 Using a DFB Diode Laser-Based Absorption Spectrometer. Chemosensors, 10(10); 390

Yang, Y., J. Sun, L. Liu, S. Zhu, and X. Yuan (2018). Research of Detection Depth for Graphene-Based Optical Sensor. Optics Communications, 411; 143–147

Yeo, T. L., T. Sun, and K. T. V. Grattan (2008). Fibre-Optic Sensor Technologies for Humidity and Moisture Measurement. Sensors and Actuators, A: Physical, 144(2); 280–295

Yong, Y.-T., S.-C. Lee, and F. A. Rahman (2017). Fiber Sensor Network with Multipoint Sensing Using Double-Pass Hybrid LPFG-FBG Sensor Configuration. Optics Communications, 387; 191–195

Zhang, J., X. Liu, G. Neri, and N. Pinna (2016). Nanostructured Materials for Room-Temperature Gas Sensors. Advanced Materials, 28(5); 795–831

Zhao, W., N. Alcheikh, S. B. Mbarek, and M. I. Younis (2022). Multi-Functional Resonant Micro-Sensor for Simultaneous Magnetic, CO2, and CH4 Detection. Journal of Applied Physics, 132(14); 144502

Zhou, Z., T. Graver, L. Hsu, and J. Ou (2003). Techniques of Advanced FBG Sensors: Fabrication, Demodulation, Encapsulation, and Their Application in the Structural Health Monitoring of Bridges. Pacific Science Review, 5(1); 116–121

Authors

Dedi Irawan
dedi.irawan@lecturer.unri.ac.id (Primary Contact)
Saktioto
Dwi Hanto
Bambang Widiyatmoko
Sutoyo
Irawan, D., Saktioto, Dwi Hanto, Widiyatmoko, B. ., & Sutoyo. (2024). High Sensitivity CH4 and CO2 Gas Sensor Using Fiber Bragg Grating Coated with Single Layer Graphene. Science and Technology Indonesia, 9(3), 710–717. https://doi.org/10.26554/sti.2024.9.3.710-717

Article Details