High Sensitivity CH4 and CO2 Gas Sensor Using Fiber Bragg Grating Coated with Single Layer Graphene
Abstract
This article outlines the development of a Fiber Bragg Grating (FBG) intended for use as a sensor for CH4 and CO2 gases. Following fabrication, the FBG was effectively treated with a layer of Graphene Material through a modified RF Sputtering process. This coating procedure involved introducing argon gas into the chamber and subjecting the FBG, securely held by two vacuum stages, to a temperature range of 27°C to 600°C by adjusting the power supplied to the cathode and anode, ranging from 0 to 125 Watts. Subsequently, the FBG was employed as a key sensing element within an experimental setup aimed at measuring gas concentrations within a confined space. The assessment involved analyzing the reflected signal of the FBG using an Optical Interrogator System, which demonstrated a shift in the Bragg wavelength of the reflected signal corresponding to varying gas concentrations. This study indicates promising outcomes for the Graphene-coated FBG as a gas sensor. The sensor’s sensitivity was evaluated based on the Bragg wavelength shift resulting from gas presence within the chamber. The Graphene-coated FBG exhibited sensitivities of 3.3 ppm for CH4 and 3.7 ppm for CO2, surpassing those reported in prior research efforts.
References
Alberto, N., C. Vigario, D. Duarte, N. A. F. Almeida, G. Gonçalves, J. L. Pinto, P. A. A. P. Marques, R. Nogueira, and V. Neto (2015). Characterization of Graphene Oxide Coatings onto Optical Fibers for Sensing Applications. Materials Today: Proceedings, 2(1); 171–177
Ameloot, R., F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels, and D. E. De Vos (2011). Interfacial Synthesis of Hollow Metal-Organic Framework Capsules Demonstrating Selective Permeability. Nature Chemistry, 3(5); 382–387
Besson, J.-P., S. Schilt, and L. Thévenaz (2006). Sub-Ppm Multi-Gas Photoacoustic Sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(5); 899–904
Gao, X. G., L. X. Cheng, W. S. Jiang, X. K. Li, and F. Xing (2021). Graphene and Its Derivatives-Based Optical Sensors. Frontiers in Chemistry, 9; 615164
Halstuch, A. and A. A. Ishaaya (2023). Femtosecond Inscription of a Fiber Bragg Grating Spectral Array in the Same Spatial Location. Sensors, 8; 4064
Hernaez, M., C. R. Zamarreño, S. Melendi-Espina, L. R. Bird, A. G. Mayes, and F. J. Arregui (2017). Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors (Switzerland), 17(1); 155
Huang, J., S. Virji, B. H. Weiller, and R. B. Kaner (2003). Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. Journal of the American Chemical Society, 125(2); 314–315.
Irawan, D., Azhar, K. Ramadhan, A. Marwin, and A. Marwan (2024). Numerical Study of Early Detection of Tuberculosis Infected with High Sensitivity Plasmonic Sensor. Science and Technology Indonesia, 9(1); 94–102
Jiang, Y. (2022). Application of Optical Fiber Sensing Technology in Bridge Detection. Highlights in Science, Engineering and Technology, 9; 111–114
Kersey, A. D. (1996). A Review of Recent Developments in Fiber Optic Sensor Technology. Optical Fiber Technology, 2(3); 291–317
Mao, X., X. Zhou, Z. Gong, and Q. Yu (2016). An All-Optical Photoacoustic Spectrometer for Multi-Gas Analysis. Sensors and Actuators B: Chemical, 232; 251–256
Measures, R. and S. Abrate (2002). Structural Monitoring with Fiber Optic Technology. Applied Mechanics Reviews, 5(1); 10
Munir, M. A., K. H. Badri, L. Y. Heng, and S. Ibrahim (2020). Biogenic Amines Detection by Chromatography and Sensor Methods: A Comparative Review. Science and Technology Indonesia, 5(4); 90–110
Papageorgiou, D. G., I. A. Kinloch, and R. J. Young (2017). Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Progress in Materials Science, 90; 75–127
Qiao, H., Z. Lin, X. Sun, W. Li, Y. Zhao, and C. Guo (2023). Fiber Optic-Based Durability Monitoring in Smart Concrete: A State-of-Art Review. Sensors, 23(18); 7810
Ramadhan, K., D. Irawan, and A. Azhar (2022). Optimum Design Sapphire-Fiber Bragg Grating for High-Temperature Sensing. Jurnal Penelitian Pendidikan IPA, 8(3); 1361–1367
Riza, M. A., Y. I. Go, S. W. Harun, and R. R. J. Maier (2020). FBG Sensors for Environmental and Biochemical Applications - A Review. IEEE Sensors Journal, 20(14); 7614–7627
Saktioto, T., K. Ramadhan, Y. Soerbakti, R. F. Syahputra, D. Irawan, and Okfalisa (2021). Apodization Sensor Performance for TOPAS Fiber Bragg Grating. Telkomnika (Telecommunication Computing Electronics and Control), 19(6); 1982–1991
Satria, E., M. Febrina, M. Djamal, W. Srigutomo, and M. Liess (2022). CO2 Thermal Conductivity Detection in Gas Mixture for Concentration Measurement Using Bridge Configuration of Thermopiles. Science and Technology Indonesia, 7(4); 443–448
Shang, Y. and C. Wang (2021). Review of Distributed Optical Fiber Sensing Technology. Yingyong Kexue Xuebao/Journal of Applied Sciences, 39(5); 843–857
Shen, B., F. Zhang, L. Jiang, X. Liu, X. Song, X. Qin, and X. Li (2021). Improved Sensing Properties of Thermal Conductivity-Type CO2 Gas Sensors by Loading Multi-Walled Carbon Nanotubes into Nano-Al2O3 Powders. Frontiers in Energy Research, 9; 1–11
Song, S., L. Li, J. Chen, N. Zhong, Y. Liu, Y. He, H. Chang, B. Wan, D. Zhong, Y. Liu, and Q. Xie (2024). Fiber Bragg Grating Sensor for Accurate and Sensitive Detection of Carbon Dioxide Concentration. Sensors and Actuators B: Chemical, 404; 135264
Stasiewicz, K. A., I. Jakubowska, J. Moś, R. Kosturek, and K. Kowiorski (2023). In-Line Gas Sensor Based on the Optical Fiber Taper Technology with a Graphene Oxide Layer. Electronics (Switzerland), 12(4); 830
Syuhada, A., M. S. Shamsudin, S. Daud, G. Krishnan, S. W. Harun, and M. S. A. Aziz (2021). Single-Mode Modified Tapered Fiber Structure Functionalized with GO-PVA Composite Layer for Relative Humidity Sensing. Photonic Sensors, 11; 314–324
Wang, H., L. Jiang, and P. Xiang (2018). Improving the Durability of the Optical Fiber Sensor Based on Strain Transfer Analysis. Optical Fiber Technology, 42; 97–104
Wu, X., Y. Du, S. Shi, C. Jiang, X. Deng, S. Zhu, X. Jin, and J. Li (2022). Simultaneous Detection of CO2 and CH4 Using a DFB Diode Laser-Based Absorption Spectrometer. Chemosensors, 10(10); 390
Yang, Y., J. Sun, L. Liu, S. Zhu, and X. Yuan (2018). Research of Detection Depth for Graphene-Based Optical Sensor. Optics Communications, 411; 143–147
Yeo, T. L., T. Sun, and K. T. V. Grattan (2008). Fibre-Optic Sensor Technologies for Humidity and Moisture Measurement. Sensors and Actuators, A: Physical, 144(2); 280–295
Yong, Y.-T., S.-C. Lee, and F. A. Rahman (2017). Fiber Sensor Network with Multipoint Sensing Using Double-Pass Hybrid LPFG-FBG Sensor Configuration. Optics Communications, 387; 191–195
Zhang, J., X. Liu, G. Neri, and N. Pinna (2016). Nanostructured Materials for Room-Temperature Gas Sensors. Advanced Materials, 28(5); 795–831
Zhao, W., N. Alcheikh, S. B. Mbarek, and M. I. Younis (2022). Multi-Functional Resonant Micro-Sensor for Simultaneous Magnetic, CO2, and CH4 Detection. Journal of Applied Physics, 132(14); 144502
Zhou, Z., T. Graver, L. Hsu, and J. Ou (2003). Techniques of Advanced FBG Sensors: Fabrication, Demodulation, Encapsulation, and Their Application in the Structural Health Monitoring of Bridges. Pacific Science Review, 5(1); 116–121
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.