New Encapsulation of Fucoxanthin Isolated from Cyclotella striata by Nano Chitosan–Pectin using Ionic Gelation Method
Abstract
Fucoxanthin is an anticancer, antioxidant, antimicrobial, and anti-inflammatory bioactive compound. Unfortunately, the conjugated double bonds of the fucoxanthin structure make it unstable, posing issues for product development, particularly with regard to shelf life. This research study aims to synthesize nano chitosan–pectin and encapsulate isolated fucoxanthin by nano chitosan–pectin using an ionic gelation method. Fucoxanthin was obtained through isolation of microalgae species Cyclotella striata. The best result of nanoparticle size using a particle size analyzer was chitosan:pectin 1 : 2 of 172 nm. Fourier transform infrared analysis showed that there was an interaction between chitosan–pectin and fucoxanthin, which was characterized by a shift in the C O absorption fucoxanthin from 1736 to 1632 cm-1. The result of morphological analysis of nano chitosan–pectin–fucoxanthin using a scanning electron microscopeshows a spherical morphology with a size between 140 and 265 nm. The result of encapsulation efficiency was 75.18%, whereas encapsulation stability increased fucoxanthin oxidation half-life 4.7 times longer than that of unencapsulated fucoxanthin. The nano chitosan pectin could be utilized as a matrix conjugate to increase the stability of fucoxanthin significantly by encapsulation. This information is expected to be useful in developing encapsulation applications for unstable compounds.
References
Amekura, H. (2018). Compendium of Surface and Interface Analysis, chapter Ultraviolet-Visible Spectrophotometry. Springer, pages 791–799
Arulmoorthy, M., G. Anbarasi, M. Srinivasan, and B. Vishnupriya (2022). Biosynthesis and Characterization of Chitosan Based Hydrogel: A Potential In vitro Wound Healing Agent. Materials Today: Proceedings, 48(Part 2); 263–275
Ashenafi, E. L., M. C. Nyman, J. T. Shelley, and N. S. Mattson (2023). Spectral Properties and Stability of Selected Carotenoid and Chlorophyll Compounds in Different Solvent Systems. Food Chemistry Advances, 2(October); 100178
Călinoiu, L. F., B. E. Ştefănescu, I. D. Pop, L. Muntean, and D. C. Vodnar (2019). Chitosan Coating Applications in Probiotic Microencapsulation. Coatings, 9(3); 194
Chun, H., C. H. Kim, and Y. H. Cho (2014). Microencapsulation of Lactobacillus Plantarum DKL 109 Using External Ionic Gelation Method. Korean Journal for Food Science of Animal Resources, 34(5); 692
Corazzari, I., R. Nisticò, F. Turci, M. G. Faga, F. Franzoso, S. Tabasso, and G. Magnacca (2015). Advanced Physico-Chemical Characterization of Chitosan by Means of TGA Coupled On-Line with FTIR and GCMS: Thermal Degradation and Water Adsorption Capacity. Polymer Degradation and Stability, 112(February); 1–9
Cordenonsi, L. M., A. Faccendini, M. Catanzaro, M. C. Bonferoni, S. Rossi, L. Malavasi, R. P. Raffin, E. E. S. Schapoval, C. Lanni, and G. Sandri (2019). The Role of Chitosan As Coating Material for Nanostructured Lipid Carriers for Skin Delivery of Fucoxanthin. International Journal of Pharmaceutics, 567(August); 118487
Cupo, A., S. Landi, S. Morra, G. Nuzzo, C. Gallo, E. Manzo, A. Fontana, and G. d’Ippolito (2021). Autotrophic Vs. Heterotrophic Cultivation of the Marine Diatom Cyclotella cryptica for Epa Production. Marine Drugs, 19(7); 355
Gatamaneni, B. L., V. Orsat, and M. Lefsrud (2018). Factors Affecting Growth of Various Microalgal Species. Environmental Engineering Science, 35(10); 1037–1048
Gérin, S., T. Delhez, A. Corato, C. Remacle, and F. Franck (2020). A Novel Culture Medium for Freshwater Diatoms Promotes Efficient Photoautotrophic Batch Production of Biomass, Fucoxanthin, and Eicosapentaenoic Acid. Journal of Applied Phycology, 32(April); 1581–1596
Guo, B., B. Liu, B. Yang, P. Sun, X. Lu, J. Liu, and F. Chen (2016). Screening of Diatom Strains and Characterization of Cyclotella cryptica As a Potential Fucoxanthin Producer. Marine Drugs, 14(7); 125
Hafez, A. S. M., R. M. Hathout, and O. A. Sammour (2018). Tracking the Transdermal Penetration Pathways of Optimized Curcumin-Loaded Chitosan Nanoparticles Via Confocal Laser Scanning Microscopy. International journal of biological macromolecules, 108; 753–764
Hosney, A., S. Ullah, and K. Barčauskaite (2022). A Review of ˙ the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network. Marine Drugs, 20(11); 675
Jabbari, N., Z. Eftekhari, N. H. Roodbari, and K. Parivar (2020). Evaluation of Encapsulated Eugenol by Chitosan Nanoparticles on the Aggressive Model of Rheumatoid Arthritis. International Immunopharmacology, 85(August); 106554
Jamshidzadeh, F., A. Mohebali, and M. Abdouss (2020). Threeply Biocompatible pH-Responsive Nanocarriers Based on HNT Sandwiched by Chitosan/Pectin Layers for Controlled Release of Phenytoin Sodium. International Journal of Biological Macromolecules, 150(May); 336–343
Kanamoto, A., Y. Kato, E. Yoshida, T. Hasunuma, and A. Kondo (2021). Development of a Method for Fucoxanthin Production Using the Haptophyte Marine Microalga Pavlova Sp. OPMS 30543. Marine Biotechnology, 23(March); 331–341
Kang, B. R., J. S. Park, G. R. Ryu, W. J. Jung, J. S. Choi, and H. M. Shin (2022). Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. Nanomaterials, 12(23); 4189
Karim, N., M. R. I. Shishir, Y. Li, O. Y. Zineb, J. Mo, J. Tangpong, and W. Chen (2022). Pelargonidin 3-O-Glucoside Encapsulated Pectin-Chitosan-Nanoliposomes Recovers Palmitic Acid-Induced Hepatocytes Injury. Antioxidants, 11(4); 623
Khan, M. A., C. Zhou, P. Zheng, M. Zhao, and L. Liang (2021). Improving Physicochemical Stability of Quercetin-Loaded Hollow Zein Particles with Chitosan/pectin Complex Coating. Antioxidants, 10(9); 1476
Khaw, Y. S., F. M. Yusoff, H. T. Tan, N. A. I. Noor Mazli, M. F. Nazarudin, N. A. Shaharuddin, A. R. Omar, and K. Takahashi (2022). Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review. Marine Drugs, 20(10); 592
Koo, S. Y., K. T. Hwang, S. Hwang, K. Y. Choi, Y. J. Park, J. H. Choi, T. Q. Truong, and S. M. Kim (2023). Nanoencapsulation Enhances the Bioavailability of Fucoxanthin in Microalga Phaeodactylum tricornutum Extract. Food Chemistry, 403(1); 134348
Koo, S. Y., I.-K. Mok, C.-H. Pan, and S. M. Kim (2016). Preparation of Fucoxanthin-Loaded Nanoparticles Composed of Casein and Chitosan with Improved Fucoxanthin Bioavailability. Journal of Agricultural and Food Chemistry, 64(49); 9428–9435
Kusumaningtyas, P., S. Nurbaiti, G. Suantika, M. B. Amran, and Z. Nurachman (2017). Enhanced Oil Production by the Tropical Marine Diatom Thalassiosira Sp. Cultivated in Outdoor Photobioreactors. Applied Biochemistry and Biotechnology, 182; 1605–1618
Maciel, V. B., C. M. Yoshida, S. M. Pereira, F. M. Goycoolea, and T. T. Franco (2017). Electrostatic Self-Assembled Chitosan-Pectin Nano-and Microparticles for Insulin Delivery. Molecules, 22(10); 1707
Mundargi, R. C., M. G. Potroz, S. Park, J. H. Park, H. Shirahama, J. H. Lee, J. Seo, and N. J. Cho (2016). Lycopodium Spores: A Naturally Manufactured, Superrobust Biomaterial for Drug Delivery. Advanced Functional Materials, 26(4); 487–497
Negi, A. and K. K. Kesari (2022). Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils. Micromachines, 13(8); 1265
Oliyaei, N., M. Moosavi Nasab, A. M. Tamaddon, and M. Fazaeli (2020). Encapsulation of Fucoxanthin in Binary Matrices of Porous Starch and Halloysite. Food Hydrocolloids, 100(March); 105458
Pajot, A., G. Hao Huynh, L. Picot, L. Marchal, and E. Nicolau (2022). Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Marine Drugs, 20(4); 222
Passos, M. L. and M. L. M. Saraiva (2019). Detection in UVVisible Spectrophotometry: Detectors, Detection Systems, and Detection Strategies. Measurement, 135(March); 896–904
Perez, E. B. M., M. C. Ruiz Domìnguez, J. E. Morales, and P. C. Mezquita (2019). Fucoxanthin from Marine Microalga Isochrysis Galbana: Optimization of Extraction Methods with Organic Solvents. DYNA, 86(210); 174
Primdahl, K. G., F. A. Hansen, E. J. Solum, J. M. J. Nolsøe, and M. Aursnes (2022). Introduction to Preparative Chromatography: Description of a Setup with Continuous Detection. Journal of Chemical Education, 99(6); 2372–2377
Quan, J., S. M. Kim, C. H. Pan, and D. Chung (2013). Characterization of Fucoxanthin-Loaded Microspheres Composed of Cetyl Palmitate-Based Solid Lipid Core and Fish Gelatin–Gum Arabic Coacervate Shell. Food Research International, 50(1); 31–37
Quiñones, J. P., H. Peniche, and C. Peniche (2018). Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers, 10(3); 235
Rahman, N. A., T. Katayama, M. E. A. Wahid, N. A. Kasan, H. Khatoon, Y. Yamada, and K. Takahashi (2020). Taxonand Growth Phase-Specific Antioxidant Production by Chlorophyte, Bacillariophyte, and Haptophyte Strains Isolated from Tropical Waters. Frontiers in Bioengineering and Biotechnology, 8(November); 581628
Ravi, H. and V. Baskaran (2015). Biodegradable Chitosan-Glycolipid Hybrid Nanogels: A Novel Approach to Encapsulate Fucoxanthin for Improved Stability and Bioavailability. Food Hydrocolloids, 43(January); 717–725
Rebitski, E. P., M. Darder, R. Carraro, P. Aranda, and E. Ruiz Hitzky (2020). Chitosan and Pectin Core-Shell Beads Encapsulating Metformin–Clay Intercalation Compounds for Controlled Delivery. New Journal of Chemistry, 44(24); 10102–10110
Sabdono, A., N. Afiati, and H. Haeruddin (2021). Fucoxanthin Identification and Purification of Brown Algae Commonly Found in Lombok Island, Indonesia. Biodiversitas Journal of Biological Diversity, 22(3); 1527–1534
Safitri, E., Z. Omaira, N. Nazaruddin, I. Mustafa, S. Saleha, R. Idroes, B. Ginting, M. Iqhrammullah, S. Alva, and M. Paristiowati (2022). Fabrication of an Immobilized Polyelectrolite Complex (PEC) Membrane from Pectin-Chitosan and Chromoionophore ETH 5294 for PH-Based\ Fish Freshness Monitoring. Coatings, 12(1); 88
Salama, A. H., H. Elmotasem, and A. A. Salama (2020). Nanotechnology Based Blended Chitosan Pectin Hybrid for Safe and Efficient Consolidative Antiemetic and NeuroProtective Effect of Meclizine Hydrochloride in Chemotherapy Induced Emesis. International Journal of Pharmaceutics, 584(June); 119411
Santos, V. P., N. S. Marques, P. C. Maia, M. A. B. d. Lima, L. d. O. Franco, and G. M. d. Campos Takaki (2020). Seafood Waste As Attractive Source of Chitin and Chitosan Production and Their Applications. International Journal of Molecular Sciences, 21(12); 4290
Sarma, S., S. Agarwal, P. Bhuyan, J. Hazarika, and M. Ganguly (2022). Resveratrol-Loaded Chitosan-Pectin Core-Shell Nanoparticles As Novel Drug Delivery Vehicle for Sustained Release and Improved Antioxidant Activities. Royal Society Open Science, 9(2); 210784
Singh, K., M. K. Paidi, A. Kulshrestha, P. Bharmoria, S. K. Mandal, and A. Kumar (2022). Deep Eutectic Solvents Based Biorefining of Value-Added Chemicals from the Diatom Thalassiosira andamanica at Room Temperature. Separation and Purification Technology, 298(1); 121636
Soukoulis, C. and T. Bohn (2018). A Comprehensive Overview on the Micro-and Nano Technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Critical Reviews in Food Science and Nutrition, 58(1); 1–36
Sriamornsak, P. and C. R. Dass (2022). Chitosan Nanoparticles in Atherosclerosis—Development to Preclinical Testing. Pharmaceutics, 14(5); 935
Tian, L., A. Singh, and A. V. Singh (2020). Synthesis and Characterization of Pectin-Chitosan Conjugate for Biomedical Application. International Journal of Biological Macromolecules, 153(June); 533–538
Wang, H., Y. Zhang, L. Chen, W. Cheng, and T. Liu (2018). Combined Production of Fucoxanthin and Epa from Two Diatom Strains Phaeodactylum tricornutum and Cylindrotheca fusiformis Cultures. Bioprocess and Biosystems Engineering, 41(April); 1061–1071
Wang, Y., Q. Zhou, J. Zheng, H. Xiong, L. Zhao, Y. Xu, and C. Bai (2023). Fabricating Pectin and Chitosan Double Layer Coated Liposomes to Improve Physicochemical Stability of Beta Carotene and Alter Its Gastrointestinal Fate. International Journal of Biological Macromolecules, 247(August); 125780
Xie, C., M. Huang, R. Ying, X. Wu, K. Hayat, L. K. Shaughnessy, and C. Tan (2023). Olive Pectin Chitosan Nanocomplexes for Improving Stability and Bioavailability of Blueberry Anthocyanins. Food Chemistry, 417(August); 135798
Zhao, D., D. Yu, M. Kim, M. Y. Gu, S. M. Kim, C. H. Pan, G. H. Kim, and D. Chung (2019). Effects of Temperature, Light, and pH on the Stability of Fucoxanthin in an Oil-In Water Emulsion. Food Chemistry, 291(September); 87–93
Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan (2020). Facile Synthesis of Nano-Nanocarriers from Chitosan and Pectin with Improved Stability and Bio-compatibility for Anthocyanins Delivery: An In vitro and In vivo Study. Food Hydrocolloids, 109(December); 106114
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.