Perturbed Trapezoid Like Inequalities

Waseem Ghazi Alshanti, Iqbal Mohammad Batiha, Ahmad Alshanty, Amjed Zraiqat, Iqbal Hamzah Jebril, Ma’mon Ahmad Abu

Abstract

In our current research article, based on a general configuration of a 3-step Peano kernel, new versions of integral inequality of Ostrowski’s type are developed for differentiable mappings that have second derivatives belong to L∞. Then we utilized these versions to generate new perturbed trapezoid like inequalities. These new perturbed trapezoid like inequalities are proposed with error bounds smaller than and similar to those reported by previous studies. Moreover, some of the obtained perturbed trapezoid like inequalities reveal the relationship between the Euler-Maclaurin summation and the trapezoidal rule. Finally, certain implementations to numerical composite quadrature rules are provided for completeness.

References

Al-Zoubi, H., A. Dababneh, and M. Al-Sabbagh (2019). Ruled Surfaces of Finite II-Type. WSEAS Transactions on Mathematics, 18; 1–5

Albadarneh, R. B., I. Batiha, A. Alomari, and N. Tahat (2021a). Numerical Approach for Approximating the Caputo Fractional-Order Derivative Operator. AIMS Mathematics, 6(11); 12743–12756

Albadarneh, R. B., I. M. Batiha, A. Adwai, N. Tahat, and A. Alomari (2021b). Numerical Approach of RiemannLiouville Fractional Derivative Operator. International Journal of Electrical and Computer Engineering, 11(6); 5367–5378

Alshanti, W. G. (2018). A Perturbed Version of General Weighted Ostrowski Type Inequality and Applications. International Journal of Analysis and Applications, 16(4); 503–517

Alshanti, W. G. (2019). Inequality of Ostrowski Type for Mappings with Bounded Fourth Order Partial Derivatives. In Abstract and Applied Analysis, 2019; 1–6

Alshanti, W. G. (2021). Riemann-Stieltjes Integrals and Some Ostrowski Type Inequalities. The Australian Journal of Mathematical Analysis and Applications, 18(1); 1–11

Alshanti, W. G., A. Alshanty, A. Zraiqat, and I. H. Jebril (2022). Cubature Formula for Double Integrals Based on Ostrowski Type Inequality. International Journal of Difference Equations, 17(2); 379–387

Alshanti, W. G. and G. V. Milovanovic (2020). Double-Sided Inequalities of Ostrowski’s Type and Some Applications. Journal of Computational Analysisand Applications, 28(4); 724–736

Alshanti, W. G. and A. Qayyum (2017). A Note on New Ostrowski Type Inequalities Using a Generalized Kernel. Bulletin of Mathematical Analysis and Applications, 9(1); 74–91

Alshanti, W. G., A. Qayyum, and M. A. Majid (2017). Ostrowski Type Inequalities by Using a Generalized Quadratic Kernel. Journal of Inequalities and Special Functions, 8(4); 111–135

Amjad, J., A. Qayyum, S. Fahad, and M. Arslan (2022). Some New Generalized Ostrowski Type Inequalities with New Error Bounds. Innovative Journal of Mathematics, 1(2); 30–43

Batiha, I. M. (2011). Restriction method for approximating square roots. International Journal of Open Problems in Computer Science and Mathematics, 4(3); 146–151

Batiha, I. M., S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, and M. Albdareen (2022). Modified Three-Point Fractional Formulas with Richardson Extrapolation. Mathematics, 10(19); 3489

Dragomir, S. S. and A. Sofo (2000). An Integral Inequality for Twice Differentiable Mappings and Applications. Tamkang Journal of Mathematics, 31(4); 257–266

Liu, W., X. Gao, and Y. Wen (2016). Approximating the Finite Hilbert Transform Via Some Companions of Ostrowski’s Inequalities. Bulletin of the Malaysian Mathematical Sciences Society, 39; 1499–1513

Liu, W. and N. Lu (2015). Approximating the Finite Hilbert Transform Via Simpson Type Inequalities and Applications. Journal Scientific Bulletin Series A Applied Mathematics and Physics, 77(3); 107–122

Liu, W. and J. Park (2017a). A Companion of Ostrowski Like Inequality and Applications to Composite Quadrature Rules. Journal of Computational Analysis and Applications, 22(1); 19–24

Liu, W. and J. Park (2017b). Some Perturbed Versions of the Generalized Trapezoid Inequality for Functions of Bounded Variation. Journal of Computational Analysis and Applications, 22(1); 11–18

Milovanovic, G. (1977). On Some Functional Inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, 599; 1–59

Milovanović, G. V. (1975). On Some Integral Inequalities. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, (498/541); 119–124

Milovanović, G. V. (2017). Summation Formulas of Euler–Maclaurin and Abel–Plana: Old and New Results and Applications. Progress in Approximation Theory and Applicable Complex Analysis: In Memory of QI Rahman, 2017; 429–461

Milovanović, G. V. and J. E. Pečarić (1976). On Generalization of the Inequality of A. Ostrowski and Some Related Applications. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, (544/576); 155–158

Ðorđević, R. Ž. and G. V. Milovanović (1975). A Generalization of E. Landau’s Theorem. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, (498/541); 97–106

Ostrowski, A. (1937). Über Die Absolutabweichung Einer Differentiierbaren Funktion Von Ihrem Integralmittelwert. Commentarii Mathematici Helvetici, 10(1); 226–227

Vasić, P. M. and G. V. Milovanović (1976). On an Inequality of Iyengar. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, (544/576); 18–24

Authors

Waseem Ghazi Alshanti
Iqbal Mohammad Batiha
i.batiha@zuj.edu.jo (Primary Contact)
Ahmad Alshanty
Amjed Zraiqat
Iqbal Hamzah Jebril
Ma’mon Ahmad Abu
Ghazi Alshanti, W. ., Mohammad Batiha, I., Alshanty, A. ., Zraiqat, A. ., Hamzah Jebril, I., & Ahmad Abu, M. . (2023). Perturbed Trapezoid Like Inequalities. Science and Technology Indonesia, 8(2), 205–211. https://doi.org/10.26554/sti.2023.8.2.205-211

Article Details

Similar Articles

You may also start an advanced similarity search for this article.