Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens)
Abstract
Sungkai is a plant that is widely found in Indonesia. This plant is often used in traditional medicine so the biotechnology of endophytic fungi is highly needed due to natural resources from plants that have been reduced. This study reported on endophytic fungi found in sungkai leaves and the compound produced. Morphological and molecular identification through phylogenetic tree analysis was carried out to determine the endophytic fungal species found. Potato Dextrose Broth media was used for the cultivation process. Ethyl acetate was used as a solvent for the extraction and the evaporation process used a rotary evaporator. Antioxidant and antibacterial tests were carried out using the DPPH method and paper disc diffusion. Chromatographic techniques were used to isolate the compound and spectroscopic analysis was performed to identify its chemical structure. The results of the morphological and molecular analysis showed Trichoderma asperellum as an endophytic fungus identified. The pure compound obtained from this endophytic fungus was 4-hydroxybenzoic acid. The antioxidant and antibacterial activity showed a strong category (IC50 = 43.88 ????g/mL; MIC 64 ????g/mL). This compound was very likely to be a raw material for new antibiotics and antioxidants through further research with various modifications.
References
Adamczak, A., M. Ożarowski, and T. M. Karpiński (2019). Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed In Plants. Journal of Clinical Medicine, 9(1); 109
Al Rajhi, A. M., A. Mashraqi, M. A. Al Abboud, A. R. M. Shater, S. K. Al Jaouni, S. Selim, and T. M. Abdelghany (2022). Screening of Bioactive Compounds From Endophytic Marine-derived Fungi in Saudi Arabia: Antimicrobial and Anticancer Potential. Life, 12(8); 1182
Baazeem, A., A. Almanea, P. Manikandan, M. Alorabi, P. Vijayaraghavan, and A. Abdel Hadi (2021). In Vitro Antibacterial, Antifungal, Nematocidal and Growth Promoting Activities of Trichoderma Hamatum fb10 and Its Secondary Metabolites. Journal of Fungi, 7(5); 331
Baliyan, S., R. Mukherjee, A. Priyadarshini, A. Vibhuti, A. Gupta, R. P. Pandey, and C. M. Chang (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules, 27(4); 1326
Burel, C., A. Kala, and L. Purevdorj Gage (2021). Impact of pH on Citric Acid Antimicrobial Activity Against Gram-negative Bacteria. Letters in Applied Microbiology, 72(3); 332–340
Cho, J. Y., J. H. Moon, K. Y. Seong, and K. H. Park (1998). Antimicrobial Activity of 4-hydroxybenzoic Acid and Trans 4-hydroxycinnamic Acid Isolated and Identified from Rice
Hull. Bioscience, Biotechnology, and Biochemistry, 62(11); 2273–2276
Cruz, J. S., C. A. da Silva, and L. Hamerski (2020). Natural Products from Endophytic Fungi Associated with Rubiaceae Species. Journal of Fungi, 6(3); 128
Dillasamola, D., Y. Aldi, H. Kurniawan, and I. M. Jalius (2021). Immunomodulator Effect Test of Sungkai Leaves (Peronema canescsens Jack.) Ethanol Extract Using Carbon Clearance Method. International Conference on Contemporary Science and Clinical Pharmacy, 40; 1–6
Ding, Z., T. Tao, L. Wang, Y. Zhao, H. Huang, D. Zhang, M. Liu, Z. Wang, and J. Han (2019). Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves. Journal of Microbiology and Biotechnology, 29(5); 731–738
El Hawary, S. S., A. S. Moawad, H. S. Bahr, U. R. Abdelmohsen, and R. Mohammed (2020). Natural Product Diversity from the Endophytic Fungi of the Genus Aspergillus. RSC Advances, 10(37); 22058–22079
El_Komy, M. H., A. A. Saleh, A. Eranthodi, and Y. Y. Molan (2015). Characterization of Novel Trichoderma Asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium wilt. The Plant Pathology Journal, 31(1); 50
Farhadi, F., B. Khameneh, M. Iranshahi, and M. Iranshahy (2019). Antibacterial Activity of Flavonoids and Their Structure–activity Relationship: An Update Review. Phytotherapy Research, 33(1); 13–40
Ferraz, C. R., T. T. Carvalho, M. F. Manchope, N. A. Artero, F. S. Rasquel Oliveira, V. Fattori, R. Casagrande, and W. A. Verri Jr (2020). Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-clinical and Clinical Data, and Pharmaceutical Development. Molecules, 25(3); 762
Górniak, I., R. Bartoszewski, and J. Króliczewski (2019). Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochemistry Reviews, 18; 241–272
Gu, H., S. Zhang, L. Liu, Z. Yang, F. Zhao, and Y. Tian (2022). Antimicrobial Potential of Endophytic Fungi From Artemisia argyi and Bioactive Metabolites From Diaporthe sp. AC1. Frontiers in Microbiology, 13; 1–13
Habisukan, U. H., E. Elfita, H. Widjajanti, A. Setiawan, and A. R. Kurniawati (2021). Diversity of Endophytic Fungi in Syzygium Aqueum. Biodiversitas Journal of Biological Diversity, 22(3); 1129 1137
Hapida, Y., E. Elfita, H. Widjajanti, and S. Salni (2021). Biodiversity and Antibacterial Activity of Endophytic Fungi Isolated From Jambu Bol (Syzygium Malaccense). Biodiversitas Journal of Biological Diversity, 22(12); 5668–5677
Ikram, M., N. Ali, G. Jan, M. Hamayun, F. G. Jan, and A. Iqbal (2019). Novel Antimicrobial and Antioxidative Activity by Endophytic Penicillium Roqueforti and Trichoderma Reesei Isolated From Solanum Surattense. Acta Physiologiae Plantarum, 41(9); 1–11
Karuppiah, V., J. Sun, T. Li, M. Vallikkannu, and J. Chen (2019). Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus Amyloliquefaciens 1841 Causes Differential Gene Expression and Improvement in the Wheat Growth and Biocontrol Activity. Frontiers in Microbiology, 10; 1068
Khan, R., S. T. Q. Naqvi, N. Fatima, and S. A. Muhammad (2019). Study of Antidiabetic Activities of Endophytic Fungi Isolated From Plants. Pure and Applied Biology (PAB), 8(2); 1287–1295
Khan, R. A. A., S. Najeeb, S. Hussain, B. Xie, and Y. Li (2020). Bioactive Secondary Metabolites From Trichoderma spp. Against Phytopathogenic Fungi. Microorganisms, 8(6); 817
Kubiak Tomaszewska, G., P. Roszkowski, E. Grosicka Maciąg, P. Strzyga Łach, and M. Struga (2022). Effect of Hydroxyl Groups Esterification with Fatty Acids on the Cytotoxicity and Antioxidant Activity of Flavones. Molecules, 27(2); 420
Lahlali, R., S. Ezrari, N. Radouane, J. Kenfaoui, Q. Esmaeel, H. El Hamss, Z. Belabess, and E. A. Barka (2022). Biological Control of Plant Pathogens: a Global Perspective. Microorganisms, 10(3); 596
Latief, M. (2021). Antidiabetic Activity of Sungkai (Peronema canescens Jack) Leaves Ethanol Extract on the Male Mice Induced Alloxan Monohydrate. Pharmacology and Clinical Pharmacy Research, 6(2); 64
Manganyi, M. C. and C. N. Ateba (2020). Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms, 8(12); 1934
Mbilu, M., W. Wanyoike, M. Kangogo, C. Bii, M. Agnes, and C. Kihia (2018). Isolation and Characterization of Endophytic Fungi from Medicinal Plant Warburgia ugandensis. Journal of Biology, Agricultue and Healthcare, 8(12); 57–66
Morais, E. M., A. A. R. Silva, F. W. A. d. Sousa, I. M. B. d. Azevedo, H. F. Silva, A. M. G. Santos, J. E. A. Beserra Júnior, C. P. d. Carvalho, M. N. Eberlin, and A. M. Porcari (2022). Endophytic Trichoderma Strains Isolated from Forest Species of the Cerrado-Caatinga Ecotone are Potential Biocontrol Agents Against Crop Pathogenic Fungi. PLoS One, 17(4); 0265824
Mucha, P., A. Skoczyńska, M. Małecka, P. Hikisz, and E. Budzisz (2021). Overview of the Antioxidant and Anti-inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules, 26(16); 4886
Omomowo, I., A. Fadiji, and O. Omomowo (2020). Antifungal Evaluation and Phytochemical Profile of Trichoderma Harzianum and Glomus Versiforme Secondary Metabolites on Cowpea Pathogens. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 22(2); 265–72
Pitt, J. I. and A. D. Hocking (2009). Fungi And Food Spoilage. Journal of Chemical Information and Modeling, 5(3); 519
Platzer, M., S. Kiese, T. Tybussek, T. Herfellner, F. Schneider, U. Schweiggert-Weisz, and P. Eisner (2022). Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure -property Relationship (QSPR) Study. Frontiers in Nutrition, 663(9); 4–8
Sarbu, L., L. Bahrin, C. Babii, M. Stefan, and M. Birsa (2019). Synthetic Flavonoids with Antimicrobial Activity: a Review. Journal of Applied Microbiology, 127(5); 1282–1290
Scudeletti, D., C. A. C. Crusciol, J. W. Bossolani, L. G. Moretti, L. Momesso, B. Servaz Tubana, S. G. Q. De Castro, E. F. De Oliveira, and M. Hungria (2021). Trichoderma Asperellum Inoculation as A Tool For Attenuating Drought Stress in Sugarcane. Frontiers in Plant Science, 12; 645542
Setiawan, A. (2022). Antibacterial Activity of Endophytic Fung Isolated From the Stem Bark of Jambu Mawar (Syzygium Jambos). Biodiversitas, 23(1); 521–532
Shamsudin, N. F., Q. U. Ahmed, S. Mahmood, S. A. Ali Shah, A. Khatib, S. Mukhtar, M. A. Alsharif, H. Parveen, and Z. A. Zakaria (2022). Antibacterial Effects of Flavonoids and Their Structure activity Relationship Study: A Comparative Interpretation. Molecules, 27(4); 1149
Sharma, H., A. K. Rai, D. Dahiya, R. Chettri, and P. S. Nigam (2021). Exploring Endophytes for In Vitro Synthesis of Bioactive Compounds Similar to Metabolites Produced In Vivo by Host Plants. AIMS microbiology, 7(2); 175
Singh, A., D. K. Singh, R. N. Kharwar, J. F. White, and S. K. Gond (2021). Fungal Endophytes as Efficient Sources of Plant-derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms, 9(1); 197
Spiegel, M., K. Kapusta, W. Kołodziejczyk, J. Saloni, B. Żbikowska, G. A. Hill, and Z. Sroka (2020). Antioxidant Activity of Selected Phenolic Acids–ferric Reducing Antioxidant Power Assay and Qsar Analysis of the Structural Features. Molecules, 25(13); 3088
Stracquadanio, C., J. M. Quiles, G. Meca, and S. O. Cacciola (2020). Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. Journal of Fungi, 6(4); 263
Sumilat, D. A., R. A. J. Lintang, S. L. Undap, A. A. Adam, and T. E. Tallei (2022). Phytochemical, Antioxidant, and Antimicrobial Analysis of Trichoderma asperellum Isolated From Ascidian eudistoma sp. Journal of Applied Pharmaceutical Science, 12(4); 090–095
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013). Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12); 2725–2729 Tiwari, P. and H. Bae (2020). Horizontal Gene Transfer and Endophytes: an Implication For the Acquisition of Novel Traits. Plants, 9(3); 305
Tyśkiewicz, R., A. Nowak, E. Ozimek, and J. Jaroszuk Ściseł (2022). Trichoderma: The Current Status of Its Application in Agriculture For the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal ofMolecular Sciences, 23(4); 2329
Walsh, T. J., R. T. Hayden, and D. H. Larone (2018). Larone’s Medically Important Fungi: A Guide to Identification. John Wiley & Sons
Watanabe, T. (2002). Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key To Species. CRC press
Wen, J., S. K. Okyere, S. Wang, J. Wang, L. Xie, Y. Ran, and Y. Hu (2022). Endophytic Fungi: An Effective Alternative Source of Plant-derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2); 205
Wu, Q., R. Sun, M. Ni, J. Yu, Y. Li, C. Yu, K. Dou, J. Ren, and J. Chen (2017). Identification of A Novel Fungus, Trichoderma Asperellum GDFS1009, and Comprehensive Evaluation of Its Biocontrol Efficacy. PloS one, 12(6); e0179957
Zhang, J. L., W. L. Tang, Q. R. Huang, Y. Z. Li, M. L. Wei, L. L. Jiang, C. Liu, X. Yu, H. W. Zhu, and G. Z. Chen (2021). Trichoderma: A Treasure House of StructurallymDiverse Secondary Metabolites With Medicinal Importance. Frontiers in Microbiology, 12; 723828
Zin, N. A. and N. A. Badaluddin (2020). Biological Functions of Trichoderma Spp. For Agriculture Applications. Annals of Agricultural Sciences, 65(2); 168–178
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.