Pre-Formulation Study on The Preparation of Skin Cosmetics
Abstract
Cosmetics have been a trend necessary for all people. The increasing need of the community in the use of cosmetics becomes the basis of the formulation of this article. Pre-formulation study for cosmetics is important to ensure that the final preparation of the cosmetics is safe to use and has maintained quality. A pre-formulation study for cosmetics is a study of physicochemical characteristics associated with the substances used in the formulation of cosmetics preparation to produce a quality cosmetic product. The pre-formulation study described here includes evaluation of sensitivity and irritability, organoleptic, formulation compatibility, thermal effect, partition coefficient, stability, particle size, wettability, hygroscopicity, type of preparation, and pH. This review article is compiled by searching for literature associated with the topic studied. Taken together, this review suggests that the pre-formulation study described recommended to be performed during the information searching step related to the physicochemical properties of ingredients used for cosmetic preparations. All of the topic studied is beneficial to determine the quality of the ingredients within the preparation before formulation, therefore, the production of cosmetic preparation can be more effective because it directs the choice of ingredients and optimum ingredient composition.
References
Akhtar, N., Shahiq-uz-zaman, Khan, B. A., Haji, M., Khan, S., Ahmad, M., et al. (2011). Evaluation of various functional skin parameters using a topical cream of calendula officinalis extract. African Journal of Pharmacy and Pharmacology, 5(2), 199–206. https://doi.org/10.5897/AJMR10.368
Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., & Fessi, H. (2004). Skin penetration and distribution of polymeric nanoparticles. Journal of Controlled Release, 99(1), 53–62. https://doi.org/10.1016/j.jconrel.2004.06.015
Ana, A., Subekti, S., Hamidah, S., & Komariah, K. (2017). Organoleptic test patisserie product based on consumer preference. In IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/180/1/012294
Andrews, S. N., Jeong, E., & Prausnitz, M. R. (2013). Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharmaceutical Research. https://doi.org/10.1007/s11095-012-0946-7
Anissimov, Y. G., Jepps, O. G., Dancik, Y., & Roberts, M. S. (2013). Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2012.04.009
Arya, P., & Pathak, K. (2014). Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. International Journal of Pharmaceutics, 460(1–2), 1–12. https://doi.org/10.1016/j.ijpharm.2013.10.045
Barry, B. W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/S0928-0987(01)00167-1
Basketter, D. A., Alépée, N., Ashikaga, T., Barroso, J., Gilmour, N., Goebel, C., et al. (2014). Categorization of chemicals according to their relative human skin sensitizing potency. Dermatitis. https://doi.org/10.1097/DER.0000000000000003
Benvenuti, S., Bortolotti, E., & Maggini, R. (2016). Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2015.12.052
Binks, B. P. (2002). Particles as surfactants—similarities and differences. Current Opinion in Colloid & Interface Science 7, 21–41.
Binks, B. P., & Fletcher, P. D. I. (2001). Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir. https://doi.org/10.1021/la0103315
Björkegren, S., Nordstierna, L., Törncrona, A., & Palmqvist, A. (2017). Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. Journal of Colloid and Interface Science, 487, 250–257. https://doi.org/10.1016/j.jcis.2016.10.031
Bogdan, M., Endres, L., Pasca, B., Tit, D. M., Uivarosan, D., Copolovici, D. M., et al. (2019). Study on the stability and compatibility of the cosmetic products with lavandula angustifolia oil kept in PPH polypropylene homopolymer plastic containers. Materiale Plastice.
Bronaugh, R. L., Congdon, E. R., & Scheuplein, R. J. (1981). The effect of cosmetic vehicles on the penetration of N-nitrosodiethanolamine through excised human skin. Journal of Investigative Dermatology, 76(2), 94-96.
Cardoso, M. J., Cardoso, J. S., Oliveira, H. P., & Gouveia, P. (2016). The breast cancer conservative treatment. Cosmetic results – BCCT.core – Software for objective assessment of esthetic outcome in breast cancer conservative treatment: A narrative review. Computer Methods and Programs in Biomedicine, 126, 154–159. https://doi.org/10.1016/j.cmpb.2015.11.010
Carriço, C., Pinto, P., Graça, A., Gonçalves, L. M., Ribeiro, H. M., & Marto, J. (2019). Design and characterization of a new quercus suber-based pickering emulsion for topical application. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11030131
Casagrande, R., Georgetti, S. R., Verri, W. A., Borin, M. F., Lopez, R. F. V., & Fonseca, M. J. V. (2007). In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. International Journal of Pharmaceutics, 328(2), 183–190. https://doi.org/10.1016/j.ijpharm.2006.08.006
Cevc, G., & Vierl, U. (2010). Nanotechnology and the transdermal route. A state of the art review and critical appraisal. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2009.10.016
Chunyan, H., Xuan, J., & Hongfang., L. (2014). Study on the influence of making up process of chemical fiber preparation agent’s surface tension. [J]. Synthetic Technology and application, 29((1)), 42–46.
Couteau, C., & Coiffard, L. J. M. (2000). Photostability determination of arbutin, a vegetable whitening agent. Farmaco, 55(5), 410–413. https://doi.org/10.1016/S0014-827X(00)00049-5
Cui, Z. G., Yang, L. L., Cui, Y. Z., & Binks, B. P. (2010). Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant. Langmuir. https://doi.org/10.1021/la903589e
De Mello, H., Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M., & Leon, L. L. (2004). Antileishmanial pyrazolopyridine derivatives: Synthesis and structure-activity relationship analysis. Journal of Medicinal Chemistry, 47(22), 5427–5432. https://doi.org/10.1021/jm0401006
De Mesquita-Guimarães, K., Santin, G., Scatena, C., Rodrigues, A., & Serra, M. (2017). Reproducibility of an organoleptic method for halitosis assessment. European Journal of General Dentistry. https://doi.org/10.4103/2278-9626.198600
Debnath, B. K., Saha, U. K., & Sahoo, N. (2015). A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renewable and Sustainable Energy Reviews, 42, 196–211. https://doi.org/10.1016/j.rser.2014.10.023
El Maghraby, G. M., Barry, B. W., & Williams, A. C. (2008). Liposomes and skin: From drug delivery to model membranes. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ejps.2008.05.002
Fäldt, P., & Bergenståhl, B. (1996). Spray-dried whey protein/lactose/soybean oil emulsions. 2. Redispersability, wettability and particle structure. Food Hydrocolloids, 10(4), 431–439. https://doi.org/10.1016/S0268-005X(96)80021-X
Fernandes, L. P., Oliveira, W. P., Sztatisz, J., Szilágyi, I. M., & Novák, C. (2009). Solid state studies on molecular inclusions of lippia sidoides essential oil obtained by spray drying. Journal of Thermal Analysis and Calorimetry, 95(3), 855–863. https://doi.org/10.1007/s10973-008-9149-1
Figueiredo, M., Moura, M. J., & Ferreira, P. J. (2021). Characterization of Pharmaceutical Nano and Microsystems, 1-25. https://doi.org/10.1002/9781119414018.ch1
Filipović, M., Lukić, M., Krstonošić, V., Doroević, S., Pantelić, I., Gledović, A., et al. (2016). Feasibility of a natural surfactant as a stabilizer for cosmetics with liposome-encapsulated plant stem cells: Pre-formulation and formulation through stability studies. Tenside, Surfactants, Detergents, 53(3), 214–226.
https://doi.org/10.3139/113.110426
Gamoudi, S., & Srasra, E. (2017). Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Applied Clay Science, 146(January), 162–166. https://doi.org/10.1016/j.clay.2017.05.036
Góral, M., Kozłowicz, K., Pankiewicz, U., Góral, D., Kluza, F., & Wójtowicz, A. (2018). Impact of stabilizers on the freezing process, and physicochemical and organoleptic properties of coconut milk-based ice cream. LWT. https://doi.org/10.1016/j.lwt.2018.03.010
Hadgraft, J., & Lane, M. E. (2016). Advanced topical formulations (ATF). International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2016.05.065
Hayase, M. (2017). Introduction to Cosmetic Materials. In Cosmetic Science and Technology: Theoretical Principles and Applications. https://doi.org/10.1016/B978-0-12-802005-0.00010-0
Hoffmann, S., Kleinstreuer, N., Alépée, N., Allen, D., Api, A. M., Ashikaga, T., et al. (2018). Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database *. Critical Reviews in Toxicology. https://doi.org/10.1080/10408444.2018.1429385
Hussein, G.M., Elhaj, B.M. & Ali, H.S. (2021). Characterization of Drug Delivery Particles in Pharmaceutical Disperse Systems : A Review. Systematic Reviews in Pharmacy, 12(7); 325-334.
Jayasundera, M., Adhikari, B., Aldred, P., & Ghandi, A. (2009). Surface modification of spray dried food and emulsion powders with surface-active proteins: A review. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2009.01.036
Jepps, O. G., Dancik, Y., Anissimov, Y. G., & Roberts, M. S. (2013). Modeling the human skin barrier - Towards a better understanding of dermal absorption. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2012.04.003
Karadzovska, D., Brooks, J. D., Monteiro-Riviere, N. A., & Riviere, J. E. (2013). Predicting skin permeability from complex vehicles. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2012.01.019
Kettler, E., Müller, C. B., Klemp, R., Hloucha, M., Döring, T., Von Rybinski, W., & Richtering, W. (2007). Polymer-stabilized emulsions: Influence of emulsion components on rheological properties and droplet size. In Progress in Colloid and Polymer Science. https://doi.org/10.1007/2882_2008_074
Khan, A. D., & Alam, M. N. (2019). Cosmetics and their associated adverse effects: A Review. Journal of Applied Pharmaceutical Sciences and Research, 1–6. https://doi.org/10.31069/japsr.v2i1.1
Ki, D. H., Jung, H. C., Noh, Y. W., Thanigaimalai, P., Kim, B. H., Shin, S. C., et al. (2013). Preformulation and formulation of newly synthesized QNT3-18 for development of a skin whitening agent. Drug Development and Industrial Pharmacy, 39(4), 526–533. https://doi.org/10.3109/03639045.2012.690417
Kim, E. H. J., Chen, X. D., & Pearce, D. (2002). Surface characterization of four industrial spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids and surfaces B: Biointerfaces, 26(3), 197–212.
Kuehl, P. J., Stratton, S. P., Powell, M. B., & Myrdal, P. B. (2009). Preformulation, formulation, and in vivo efficacy of topically applied Apomine. International Journal of Pharmaceutics, 382(1–2), 104–110. https://doi.org/10.1016/j.ijpharm.2009.08.016
Larson-Smith, K., & Pozzo, D. C. (2012). Pickering emulsions stabilized by nanoparticle surfactants. Langmuir, 28(32), 11725–11732. https://doi.org/10.1021/la301896c
Li, L., Yan, Z., Jin, M., You, X., Xie, S., Liu, Z., et al. (2019). In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications. ACS Applied Materials and Interfaces, 11(18), 16934–16943. https://doi.org/10.1021/acsami.9b03160
Lima, S. G. B., Pinho, L. A. G., Pereira, M. N., Gratieri, T., Sa-Barreto, L. L., Gelfuso, G. M., & Cunha-Filho, M. (2018). Preformulation studies of finasteride to design matrix systems for topical delivery. Journal of Pharmaceutical and Biomedical Analysis, 161, 273–279. https://doi.org/10.1016/j.jpba.2018.08.056
Liu, Y. J., Shao, J. N., & Liu, P. L. (2018). The influence of the emulsion composition on the wettability of the emulsion. IOP Conference Series: Materials Science and Engineering, 323(1). https://doi.org/10.1088/1757-899X/323/1/012013
Lu, G. W., & Gao, P. (2010). Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems. https://doi.org/10.1016/b978-0-8155-2025-2.10003-4
Mahant, S., Kumar, S., Nanda, S., & Rao, R. (2020). Microsponges for dermatological applications: Perspectives and challenges. Asian Journal of Pharmaceutical Sciences, 15(3), 273–291. https://doi.org/10.1016/j.ajps.2019.05.004
Mathes, S. H., Ruffner, H., & Graf-Hausner, U. (2014). The use of skin models in drug development. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2013.12.006
Menon, V. B., & Wasan, D. T. (1988). Characterization of oil-water interfaces containing finely divided solids with applications to the coalescence of water-in-oil Emulsions: A review. Colloids and Surfaces. https://doi.org/10.1016/0166-6622(88)80169-0
Mesko, M. F., Novo, D. L. R., Costa, V. C., Henn, A. S., & Flores, E. M. M. (2020). Toxic and potentially toxic elements determination in cosmetics used for make-up: A critical review. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2019.11.046
Mun, G. C., Aardema, M. J., Hu, T., Barnett, B., Kaluzhny, Y., Klausner, M., et al. (2009). Further development of the EpiDermTM 3D reconstructed human skin micronucleus (RSMN) assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2008.12.004
Nguyen, S. H., Dang, T. P., MacPherson, C., Maibach, H., & Maibach, H. I. (2008). Prevalence of patch test results from 1970 to 2002 in a multi-centre population in North America (NACDG). Contact Dermatitis. https://doi.org/10.1111/j.1600-0536.2007.01281.x
Noaman, E., Al-Ghobashy, M. A., & Lotfy, H. (2016). Investigation of the Profile and Kinetics of Degradation of Fenticonazole Nitrate using Stability-indicating HPLC Assay in Presence of Methyl and Propyl Parabens: Application to Preformulation Studies. Analytical Chemistry Letters, 6(6), 850–862. https://doi.org/10.1080/22297928.2016.1278179
Notman, R., & Anwar, J. (2013). Breaching the skin barrier - Insights from molecular simulation of model membranes. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2012.02.011
Nugrahaeni, F., Hariyadi, D. M., & Rosita, N. (2018). Partition coefficient and glutathione penetration of topical antiaging: preformulation study. International Journal of Drug Delivery Technology, 8(02), 39-43.
Oliveira, L. B. A., de Oliveira, R. P., Oliveira, C., Raposo, N. R. B., Brandão, M. A. F., Ferreira, A. de O., & Polonini, H. (2017). Cosmetic potential of a liotropic liquid crystal emulsion containing resveratrol. Cosmetics. https://doi.org/10.3390/cosmetics4040054
Pal, R. (2018). A simple model for the viscosity of pickering emulsions. Fluids. https://doi.org/10.3390/fluids3010002
Park, J. Y., Lee, K., Hwang, Y., & Kim, J. H. (2015). Determining the exposure factors of personal and home care products for exposure assessment. Food and Chemical Toxicology, 77, 105–110.
https://doi.org/10.1016/j.fct.2015.01.002
Peiser, M., Tralau, T., Heidler, J., Api, a M., Arts, J. H. E., Basketter, D. a, et al. (2012). Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cellular and molecular life sciences : CMLS.
Pickering, S. U. (2001). CXCVI.—Emulsions. Journal of the chemical society. Transactions 1907, 21. https://doi.org/10.1002/9781119220510.ch15
Pramod, K., Suneesh, C. V., Shanavas, S., Ansari, S. H., & Ali, J. (2015). Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. Journal of Analytical Science and Technology. https://doi.org/10.1186/s40543-015-0073-2
Pulit-Prociak, J., Chwastowski, J., Bittencourt Rodrigues, L., & Banach, M. (2019). Analysis of the physicochemical properties of antimicrobial compositions with zinc oxide nanoparticles. Science and Technology of Advanced Materials, 20(1), 1150–1163. https://doi.org/10.1080/14686996.2019.1697617
Rolland, A. (1993). Particulate carriers in dermal and transdermal drug delivery: myth or reality? In: A. Rolland (ed.). Pharmaceutical Particulate CariiersVTherapeutic Applications, Marcel Dekker, New York, 367Y421.
Sassi, A. B., Bunge, K. E., Hood, B. L., Conrads, T. P., Cole, A. M., Gupta, P., & Rohan, L. C. (2011). Preformulation and stability in biological fluids of the retrocyclin RC-101, a potential anti-HIV topical microbicide. AIDS Research and Therapy, 8(1), 27. https://doi.org/10.1186/1742-6405-8-27
Schreml, S., Szeimies, R. M., Karrer, S., Heinlin, J., Landthaler, M., & Babilas, P. (2010). The impact of the pH value on skin integrity and cutaneous wound healing. Journal of the European Academy of Dermatology and Venereology, 24(4), 373–378. https://doi.org/10.1111/j.1468-3083.2009.03413.x
Shangguan, M., Liu, Y., & Jiao, W. (2011). Effect of emulsifiers on stability of methanol diesel emulsion fuel. [J]. Chemical Industry & Engineering Progress, 30(3), 509–12.
Sharadha, M., Gowda, D. V., Famna Roohi, N. K. (2020). Development and evaluation of medicated cosmetic cream to produce triple effect on skin for the treatment of uneven skin tone. International Journal Of Research In Pharmaceutical Sciences, 11(1), 221–232. https://doi.org/10.26452/ijrps.v11i1.1811
Song, J., Feng, H., Wu, M., Chen, L., Xia, W., & Zhang, W. (2020). Preparation and characterization of arginine-modified chitosan/hydroxypropyl methylcellose antibacterial film. International Journal of Biological Macromolecules, 145, 750–758. https://doi.org/10.1016/j.ijbiomac.2019.12.141
Tontul, I., & Topuz, A. (2014). Influence of emulsion composition and ultrasonication time on flaxseed oil powder properties. Powder Technology, 264, 54–60. https://doi.org/10.1016/j.powtec.2014.05.002
Turnbull, S. E. (2018). Chapter 10 - Cosmetics. An Overview of FDA Regulated Products.
van Campen, L., Amidon, G. L., & Zografi, G. (1983). Moisture sorption kinetics for water‐soluble substances I: Theoretical considerations of heat transport control. Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.2600721204
Verma, G., & Mishra, M. K. (2016). Pharmaceutical preformulation studies in formulation and development of new drug: A review. International journal of pharmaceutical sciences and research, 7(6), 2313–2320.
Vinardell, M. P., & Mitjans, M. (2008). Alternative methods for eye and skin irritation tests: An overview. Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.21088
Vocanson, M., Hennino, A., Rozières, A., Poyet, G., & Nicolas, J. F. (2009). Effector and regulatory mechanisms in allergic contact dermatitis. Allergy: European Journal of Allergy and Clinical Immunology. https://doi.org/10.1111/j.1398-9995.2009.02082.x
Vukmanović, S., & Sadrieh, N. (2017). Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Critical Reviews in Toxicology. https://doi.org/10.1080/10408444.2017.1288025
Waugh, A., Grant, A., & Chambers, G. (2014). Ross and Wilson anatomy and physiology in health and illness 12th edition, inter. nfo/Buy (https://evolve.elsevier.com/cs/product/9780702032271).
Weast, R. C. (1974). Handbook of Chemistry and Physics. 55th Ed. CRC Press, Clevland.
Williams, A. C. (2003). Transdermal and Topical Drug Delivery. Pharmaceutical Press, London.
Wohlrab, J., & Gebert, A. (2018). PH and Buffer Capacity of Topical Formulations. Current Problems in Dermatology (Switzerland), 54, 123–131. https://doi.org/10.1159/000489526
Wong, R., Geyer, S., Weninger, W., Guimberteau, J. C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental Dermatology. https://doi.org/10.1111/exd.12832
Wu, J., Liu, W., Xue, C., Zhou, S., Lan, F., Bi, L., et al. (2009). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology Letters, 191(1), 1–8. https://doi.org/10.1016/j.toxlet.2009.05.020
Xiao, M., Xu, A., Zhang, T., & Hong, L. (2018). Tailoring the wettability of colloidal particles for pickering emulsions via surface modification and roughness. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2018.00225
Yorgancioglu, A., & Bayramoglu, E. E. (2013). Production of cosmetic purpose collagen containing antimicrobial emulsion with certain essential oils. Industrial Crops and Products, 44, 378–382.
https://doi.org/10.1016/j.indcrop.2012.11.013
Zhu, Y., Jiang, J., Liu, K., Cui, Z., & Binks, B. P. (2015). Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant. Langmuir. https://doi.org/10.1021/acs.langmuir.5b00295
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.