Synthesis and Characterization of Ni(II) Schiff Base Complex as a Precursor for NiO Nanoparticles and an Investigation of Their Corrosion Inhibition
Abstract
This study first aimed to synthesize and characterize a [Ni(C14H13NO2)(OAC)2(H2O)2] via the preparation of a ligand, coordination with Ni(II) ions, and full characterization, such as "FTIR, 1H and 13C-NMR, UV-Visible spectroscopy; and ESI-mass spectrometry" The Nickel complex was then used as a precursor to prepared NiO Nps by calcination at 450°C. The phase purity, crystalline structure, and morphological characterizes of the NiO nanoparticles were investigated via X-ray diffraction (XRD), FESEM, and FTIR spectroscopy, revealing them to be cubic system with an average crystalline is 26 nm. The preparation technique is facile, cost-effective, and rapid and suitable for generating NiO nanoparticles for use in industrial processes. Further, the corrosion inhibition effectiveness of all synthesized compounds on mild steel in 1 M HCl was evaluated. Their inhibition efficiencies were determined via potentiodynamic polarization studies, revealing the highest inhibition efficiency for the NiO nanoparticles compared to the Nickel complex and free a ligand.
References
Agrawal, P. K., & Blunden, G. (2023). Methoxy 13C NMR Chemical Shift as a Molecular Descriptor in the Structural Analysis of Flavonoids and Other Phenolic Compounds. Natural Product Communications, 18(6), 1934578X231171002.
Ahmed, A. A., & Galtima, G. M. (2021). Synthesis and Characterization of Ni(II) Complex with Schiff Base Derived from Benzophenone and 2-Aminophenol. Journal of Chemistry Letters, 2(3), 114–119.
Ananthi, S., Kavitha, M., Balamurugan, A., Ranjith Kumar, E., Magesh, G., Abd El-Rehim, A. F., & Sharmila Rahale, C. (2023). Synthesis, Analysis and Characterization of Camellia Sinensis Mediated Synthesis of NiO Nanoparticles for Ethanol Gas Sensor Applications. Sensors and Actuators B: Chemical, 387, 133742.
Ansari, K., Quraishi, M., & Singh, A. (2014). Schiff’s Base of Pyridyl Substituted Triazoles as New and Effective Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Corrosion Science, 79, 5–15.
Aslam, R., Mobin, M., Huda, I. B., Obot, I. B., & Alamri, A. H. (2020). Ionic Liquids Derived from α-Amino Acid Ester Salts as Potent Green Corrosion Inhibitors for Mild Steel in 1M HCl. Journal of Molecular Liquids, 318, 113982.
Atta, A. M., El-Mahdy, G., & Al-Lohedan, H. A. (2013). Corrosion Inhibition Efficiency of Modified Silver Nanoparticles for Carbon Steel in 1 M HCl. International Journal of Electrochemical Science, 8(4), 4873–4885.
Atzin-Macedo, C. M., Pastor-Ramírez, C., González-Peláez, R., Pérez-Flores, F. J., Hernández-Anzaldo, S., Vazquez-Lima, H., & Reyes-Ortega, Y. (2020). Tautomeric Study of Schiff Bases Derived from O-Dihydroxybenzaldehyde by UV-Vis, IR, 1H NMR, 13C NMR Spectroscopy and Computational Modeling. ChemistrySelect, 5(36), 11120–11126.
Bader, A. T., Al-Qasii, N. A. R., & Khaleel, A. M. N. (2024). Synthesis and Characterization of CuO and NiO Nanoparticles Derived from Schiff Base Complexes. Science and Technology Indonesia, 9(1), 103–112.
Bain, G. A., & Berry, J. F. (2008). Diamagnetic Corrections and Pascal’s Constants. Journal of Chemical Education, 85(4), 532.
Bakhsh, H., Buledi, J., Khand, N., Junejo, B., Solangi, A., Mallah, A., & Sherazi, S. T. (2021). NiO Nanostructures Based Functional Non-Enzymatic Electrochemical Sensor for Ultrasensitive Determination of Endosulfan in Vegetables. Journal of Food Measurement and Characterization, 15, 1–10.
Boulechfar, C., Ferkous, H., Delimi, A., Berredjem, M., Kahlouche, A., Madaci, A., & Errachid, A. (2023). Corrosion Inhibition of Schiff Base and Their Metal Complexes with [Mn(II), Co(II) and Zn(II)]: Experimental and Quantum Chemical Studies. Journal of Molecular Liquids, 378, 121637.
Devi, J., Kumar, S., Kumar, B., Asija, S., & Kumar, A. (2022). Synthesis, Structural Analysis, in Vitro Antioxidant, Antimicrobial Activity and Molecular Docking Studies of Transition Metal Complexes Derived from Schiff Base Ligands of 4-(Benzyloxy)-2-Hydroxybenzaldehyde. Research on Chemical Intermediates, 48(4), 1541–1576.
Ezeorah, C. J., Ekowo, L. C., Eze, S. I., Groutso, T., Atiga, S., Okafor, S. N., & Okpareke, O. C. (2022). Synthesis, Characterization, and in Silico Studies of 2-[(E)-(2,5-Dimethoxybenzylidene)Amino]Phenol and 3-[(E)-(2,5-Dimethoxybenzylidene)Amino]Phenol. Journal of Molecular Structure, 1270, 133902.
Gönül, I., Faki, E., Ay, B., Köse, M., & Serin, S. (2018). Cobalt(II), Nickel(II) and Copper(II) Complexes of a Schiff Base Ligand: Synthesis, Structural Characterization and Luminescence Properties. Transition Metal Chemistry, 43(1), 73–81.
Jubu, P. R., Danladi, E., Ndeze, U., Adedokun, O., Landi, S. Jr, Haider, A., & Yam, F. (2024). Comment About the Use of Unconventional Tauc Plots for Bandgap Energy Determination of Semiconductors Using UV-Vis Spectroscopy. Results in Optics, 14, 100606.
Kareem, M. J., Al-Hamdani, A. A. S., Jirjees, V. Y., Khan, M. E., Allaf, A. W., & Al Zoubi, W. (2021). Preparation, Spectroscopic Study of Schiff Base Derived from Dopamine and Metal Ni (II), Pd (II), and Pt (IV) Complexes, and Activity Determination as Antioxidants. Journal of Physical Organic Chemistry, 34(3), e4156.
Kargar, H., Ashfaq, M., Fallah-Mehrjardi, M., Behjatmanesh Ardakani, R., Munawar, K. S., & Tahir, M. N. (2022). Synthesis, Crystal Structure, Spectral Characterization, Theoretical and Computational Studies of Ni (II), Cu (II) And Zn (II) Complexes Incorporating Schiff Base Ligand Derived From 4-(Diethylamino) Salicylaldehyde. Inorganica Chimica Acta, 536, 120878.
Kargar, H., Behjatmanesh-Ardakani, R., Fallah-Mehrjardi, M., Torabi, V., Munawar, K. S., Ashfaq, M., & Tahir, M. N. (2021). Ultrasound-Based Synthesis, SC-XRD, NMR, DFT, HSA of New Schiff Bases Derived From 2-Aminopyridine: Experimental and Theoretical Studies. Journal of Molecular Structure, 1233, 130105.
Kashyap, S., Kumar, S., Ramasamy, K., Lim, S. M., Shah, S. A. A., Om, H., & Narasimhan, B. (2018). Synthesis, Biological Evaluation and Corrosion Inhibition Studies of Transition Metal Complexes of Schiff Base. Chemistry Central Journal, 12(1), 117.
Khalaji, A. D., & Das, D. (2014). Synthesis and Characterizations of NiO Nanoparticles via Solid-State Thermal Decomposition of Nickel(II) Schiff Base Complexes. International Nano Letters, 4(3), 117.
Khodov, I., Belov, K., Krestyaninov, M., Sobornova, V., Dyshin, A., & Kiselev, M. (2023). Does DMSO Affect the Conformational Changes of Drug Molecules in Supercritical CO2 Media? Journal of Molecular Liquids, 384, 122230.
Kumar, S., Devi, J., Dubey, A., Kumar, D., Jindal, D. K., Asija, S., & Sharma, A. (2023). Co (II), Ni (II), Cu (II) and Zn (II) Complexes of Schiff Base Ligands: Synthesis, Characterization, DFT, In Vitro Antimicrobial Activity and Molecular Docking Studies. Research on Chemical Intermediates, 49(3), 939–965.
Laadam, G., Benhiba, F., El Faydy, M., Titi, A., Al-Gorair, A. S., Alshareef, M., & Zarrouk, A. (2022). Anti-Corrosion Performance of Novel Pyrazole Derivative for Carbon Steel Corrosion in 1 M HCl: Computational and Experimental Studies. Inorganic Chemistry Communications, 145, 109963.
Lupascu, G., Pahontu, E., Shova, S., Barbuceanu, S. F., Badea, M., Paraschivescu, C., & Draganescu, D. (2021). Co (II), Cu (II), Mn (II), Ni (II), Pd (II), and Pt (II) Complexes of Bidentate Schiff Base Ligand: Synthesis, Crystal Structure, and Acute Toxicity Evaluation. Applied Organometallic Chemistry, 35(4), e6149.
Mamudu, U., Alnarabiji, M. S., Omeiza, L. A., Subramanian, Y., Alnaser, I. A., Lim, R. C., & Sherif, E.-S. M. (2024). Biosynthesis of Nickel Oxide Nanocomposite: Experimental and Molecular Modelling of Its Carbon Steel Corrosion Protection in Acidizing Environment and Synergistic Effect Of NAI. Surface and Coatings Technology, 130937.
Mishra, M., Tiwari, K., Mourya, P., Singh, M., & Singh, V. P. (2015). Synthesis, Characterization and Corrosion Inhibition Property of Nickel (II) and Copper (II) Complexes with Some Acylhydrazine Schiff Bases. Polyhedron, 89, 29–38.
Mofidabadi, A. H. J., Dehghani, A., Bahlakeh, G., & Ramezanzadeh, B. (2024). Combined Clove Extract Biomolecules and Zinc (II) Ion Synergistic Effects in Steel Corrosion Mitigation in Saline Solution: Electronic (DFT) Modeling, Atomic/Molecular (MC/MD) Simulations, and Corrosion Measurement. Biomass Conversion and Biorefinery, 14(8), 9519–9539.
Musevi, S. J., Aslani, A., Motahari, H., & Salimi, H. (2016). Offer a Novel Method for Size Appraise of NiO Nanoparticles by PL Analysis: Synthesis by Sonochemical Method. Journal of Saudi Chemical Society, 20(3), 245–252.
Nassar, A. M., Hassan, A. M., Shoeib, M. A., & El kmash, A. N. (2015). Synthesis, Characterization and Anticorrosion Studies of New Homobimetallic Co(II), Ni(II), Cu(II), And Zn(II) Schiff Base Complexes. Journal of Bio- and Tribo-Corrosion, 1(3), 19.
Nassar, M. Y., Aly, H. M., Abdelrahman, E. A., & Moustafa, M. E. (2017). Synthesis, Characterization, and Biological Activity of Some Novel Schiff Bases and Their Co(II) and Ni(II) Complexes: A New Route for Co3O4 and NiO Nanoparticles for Photocatalytic Degradation of Methylene Blue Dye. Journal of Molecular Structure, 1143, 462–471.
Öz, S., Bozkurt, P. A., Sopacı, S. B., Acar, N., & Atakol, O. (2022). Synthesis And Characterization of NiO Nanoparticles by Using Thermal Decompositions of Ni (II)-ONO and ONNO Type Schiff Base Complexes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 200–210.
Pallares-Rusinol, A., Bernuz, M., Moura, S. L., Fernández-Senac, C., Rossi, R., & Pividori, M. I. (2023). Advances in Clinical Chemistry, Volume 112, Chapter Two - Advances in Exosome Analysis. Elsevier, 69–117.
Parsaee, Z., Mohammadi, K., Ghahramaninezhad, M., & Hosseinzadeh, B. (2016). A Novel Nano-Sized Binuclear Nickel(II) Schiff Base Complex as a Precursor for NiO Nanoparticles: Synthesis, Characterization, DFT Study and Antibacterial Activity. New Journal of Chemistry, 40(12), 10569–10583.
Platzer, G., Mayer, M., Beier, A., Brüschweiler, S., Fuchs, J. E., Engelhardt, H., & Lichtenecker, R. (2020). PI By NMR: Probing CH–π Interactions in Protein-Ligand Complexes by NMR Spectroscopy. Angewandte Chemie, 132(35), 14971–14978.
Prabhakar, U. P. S., Periyasami, G., & Karthikeyan, P. (2024). Nanostructured Metal Oxides Synthesized via Simple Thermal Decomposition of Co(II), Ni(II), Cu(II), and Zn(II) Schiff Base Complexes: Characterization and Antimicrobial Activity. Inorganic Chemistry Communications, 159, 111796.
Quevedo, R. (2020). 1H and 13C-NMR Spectroscopic Study of Intermolecular Interactions between Tyrosine-Derived Azacyclophanes and Aromatic Rings. Journal of Molecular Structure, 1207, 127777.
Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases-Structure, Importance and Classification. Molecules, 27(3), 787.
Rakhtshah, J. (2022). A Comprehensive Review on the Synthesis, Characterization, and Catalytic Application of Transition-Metal Schiff-Base Complexes Immobilized on Magnetic Fe3O4 Nanoparticles. Coordination Chemistry Reviews, 467, 214614.
Ramachandran, H., Jahanara, M. M., Nair, N. M., & Swaminathan, P. (2020). Metal Oxide Heterojunctions Using a Printable Nickel Oxide Ink. RSC Advances, 10(7), 3951–3959.
Sharma, S., Chauhan, S., Anushree, & Sindhu, M. (2022). Synthesis, Spectral Studies and Antimicrobial Activities of P-Anisalidene-O-Aminophenol and Their Metal Complexes. Environment and Ecology, 40(4C), 2540–2547.
Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds. Wiley.
Streicher, M. (2018). Application of Phase Imaging at High Field - MR Thermometry at 7 Tesla. Ph.D. thesis, der Universität Leipzig.
Supin, K., Namboothiri, P., & Vasundhara, M. (2024). Complex Magnetic Behaviour and Photocatalytic Response in Narrowed Band Gap NiO Nanoparticles Synthesized by Novel Lepidagathis ananthapuramensis Leaf Extract. Materials Science and Engineering: B, 300, 117126.
Wadhwani, P. M., Ladha, D. G., Panchal, V. K., & Shah, N. K. (2015). Enhanced Corrosion Inhibitive Effect of p-Methoxybenzylidene-4, 4'-Dimorpholine Assembled on Nickel Oxide Nanoparticles for Mild Steel in Acid Medium. RSC Advances, 5(10), 7098–7111.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.