Diamagnetic to Ferromagnetic Like Transition of Non-Stoichiometry Barium Titanate (BaTiO3-x) Prepared by Sol-gel Method
Abstract
The oxygen vacancy properties are significant, creating ferromagnetic properties of material in metal oxide systems like dilute magnetic semiconductors. An aqueous sol-gel method has been used in the present study to synthesize non-stoichiometry BaTiO3-x polycrystalline. In an attempt of examining the oxygen deficiency consequences on the magnetic properties, the gel samples were sintered (1000◦C) at various times (6, 12, 18, and 24 hours) under a vacuum environment. This study employs an X-ray diffraction apparatus in terms of characterizing segments and structures of the samples. It also investigates morphology and element distribution on the surface of the samples exploiting an Electron microscope where Energy dispersive spectroscopy is supplied. For the purpose of characterizing the magnetic properties of the samples, it applies vibrating sample magnetometers. The chemical state of the element and its corresponding bond to other elements was identified using X-ray photoelectron spectroscopy. Single-phase compounds were observed. The crystal system is tetragonal, but the crystal parameters are different. Increase sintering time leads to increase crystallite size and decrease in micro strain. Moreover, sintering in a vacuum environment results in oxygen deficiency and leads to the atomic ratio of Ba/Ti change as the sintering time increases. The Ba/Ti ratio change affects the transformation from diamagnetic to ferromagnetic-like. The elements (Ba, Ti and O) chemical state is shown and its bonding to the corresponding element along with the X-ray photoelectron spectroscopy pattern of the BTX2 sample. The element of oxygen binds to Ti and Ba while Ba element exists in two chemical states.
References
Amemiya, K. and M. Sakamaki (2015). Voltage-Induced Changes in Magnetism of FeCo/BaTiO3 Thin Films Studied by X-Ray Absorption Spectroscopy. E-Journal of Surface Science and Nanotechnology, 13; 465–468
Chen, C., H. Hao, T. Wang, J. Cheng, Z. Luo, L. Zhang, and H. Liu (2019). Nano-BaTiO3 Phase Transition Behavior in Coated BaTiO3-Based Dielectric Ceramics. Ceramics International, 45(6); 7166–7172
Clabel, J. L., I. T. Awan, A. H. Pinto, I. C. Nogueira, V. D. N. Bezzon, E. R. Leite, and E. Marega (2020). Insights on the Mechanism of Solid State Reaction Between TiO2 and BaCO3 to Produce BaTiO3 Powders: The Role of Calcination, Milling, and Mixing Solvent. Ceramics International, 46(3); 2987–3001
Dahbi, S., N. Tahiri, O. E. Bounagui, and H. E. Zahraouy (2021). Electronic, Optical, and Thermoelectric Properties of Perovskite BaTiO3 Compound Under the Effect of Compressive Strain. Chemical Physics, 544; 111105
Gao, R., X. Qin, H. Wu, R. Xu, L. Liu, Z. Wang, and X. Deng (2019). Effect of Ti Doping on the Dielectric, Ferroelectric and Magnetic Properties of Bi0.86La0.08Sm0.14FeO3 Ceramics. Materials Research Express, 6(10); 0–10
Han, D., D. Lu, and F. Meng (2019). Dielectric and Photoluminescence Properties of Fine-Grained BaTiO3 Ceramics Co-Doped with Amphoteric Sm and Valence-Variable Cr. RSC Advances, 9(8); 4469–4479
Hosseini, Z., S. M. Beidokhti, J. V. Khaki, and M. Pourabdoli (2022). Preparation of Porous Alumina/Nano-Nickel Composite by Gel Casting and Carbothermic Reduction. International Journal of Engineering, Transactions B: Applications, 35(1); 220–227
Ji, M., J. H. Kim, C. H. Ryu, and Y. I. Lee (2022). Synthesis of Self-Modified Black BaTiO3-x Nanoparticles and Effect of Oxygen Vacancy for the Expansion of Piezocatalytic Application. Nano Energy, 95; 106993
Kanazawa, T., S. Nishioka, S. Yasuda, D. Kato, T. Yokoi, S. Nozawa, and K. Maeda (2023). Influence of the Hydride Content on the Local Structure of a Perovskite Oxyhydride BaTiO3-xHx. Journal of Physical Chemistry C, 127(15); 7546–7551
Kumar, S., Y. J. Kim, B. H. Koo, and C. G. Lee (2010). Structural and Magnetic Properties of Ni Doped CeO2 Nanoparticles. Journal of Nanoscience and Nanotechnology, 10(11); 7204–7207
Kumari, A., K. Kumari, F. Ahmed, A. Alshoaibi, P. A. Alvi, S. Dalela, and S. Kumar (2021). Influence of Sm Doping on Structural, Ferroelectric, Electrical, Optical and Magnetic Properties of BaTiO3. Vacuum, 184; 109872
Lazarević, Z., N. Romćević, M. Vijatović, N. Paunović, M. Romcević, B. Stojanović, and Z. Dohčević-Mitrović (2009). Characterization of Barium Titanate Ceramic Powders by Raman Spectroscopy. Acta Physica Polonica A, 115(4); 808–810
Liu, L., Y. Y. Jia, J. T. Jiang, B. Zhang, G. A. Li, W. Z. Shao, and L. Zhen (2019a). The Effect of Cu and Sc on the Localized Corrosion Resistance of Al-Zn-Mg-X Alloys. Journal of Alloys and Compounds, 799; 1–14
Liu, Q., J. Liu, D. Lu, T. Li, and W. Zheng (2019b). Dense Sm and Mn Co-Doped BaTiO3 Ceramics with High Permittivity. Materials, 12(4)
Maneesha, P., K. S. Samantaray, S. C. Baral, G. Brzykcy, I. Bhaumik, A. Mekki, and S. Sen (2024). Effect of Oxygen Vacancies and Cationic Valence State on Multiferroicity and Magnetodielectric Coupling in (1-x)BaTiO3.(x)LaFeO3 Solid Solution. Journal of Alloys and Compounds, 971; 172587
Mangalam, R. V. K., N. Ray, U. V. Waghmare, A. Sundaresan, and C. N. R. Rao (2009). Multiferroic Properties of Nanocrystalline BaTiO3. Solid State Communications, 149; 1–5
Mohanty, N. K., A. K. Behera, S. K. Satpathy, B. Behera, and P. Nayak (2015). Effect of Dysprosium Substitution on Structural and Dielectric Properties of BiFeO3-PbTiO3 Multiferroic Composites. Journal of Rare Earths, 33(6); 639–646
Niasar, M. M., M. J. Molaei, and A. Aghaei (2021). Electromagnetic Wave Absorption Properties of Barium Ferrite/Reduced Graphene Oxide Nanocomposites. International Journal of Engineering Transactions C: Aspects, 34(6); 1503–1511
Pavlovic, V. P., M. V. Nikolic, V. B. Pavlovic, J. Blanusa, S. Stevanovic, V. V. Mitic, and B. Vlahovic (2014). Raman Responses in Mechanically Activated BaTiO3. Journal of the American Ceramic Society, 97(2); 601–608
Puspitasari, P. and L. S. Budi (2020). Physical and Magnetic Properties Comparison of Cobalt Ferrite Nanopowder Using Sol-Gel and Sonochemical Methods. International Journal of Engineering Transactions B: Applications, 33(5); 877–884
Rani, A. and P. Saravanan (2023). Heterojunction Built Sillenite/Perovskite (Bi25Fe2O39 SrTiO3) Composite of Distinct Light Sensitive Nature for an Interactive Solar Photocatalysis Performance. Journal of Environmental Chemical Engineering, 11(2); 109550
Rubavathi, P. E., M. V. G. Babu, B. Bagyalakshmi, L. Venkidu, D. Dhayanithi, N. V. Giridharan, and B. Sundarakannan (2019). Impact of Ba/Ti Ratio on the Magnetic Properties of BaTiO3 Ceramics. Vacuum, 159; 374–378
Sakamaki, M. and K. Amemiya (2015). Observation of Fe/BaTiO3 Interface State by X-Ray Absorption Spectroscopy. E-Journal of Surface Science and Nanotechnology, 13; 139–142
Salman, K. D. (2022). Synthesis and Characterization Unsaturated Polyester Resin Nanocomposites Reinforced by Fe2O3+Ni Nanoparticles: Influence on Mechanical and Magnetic Properties. International Journal of Engineering Transactions B: Applications, 35(2); 525–531
Shahbahrami, B., S. M. Rabiee, R. Shidpoor, and H. Salimi-Kenari (2022). Role of Praseodymium Addition in the Microstructure and Magnetic Properties of ZnCo Ferrite Nanopowders: Positive or Negative? International Journal of Engineering, Transactions B: Applications, 35(1); 14–20
Shuai, Y., S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, and H. Schmidt (2011). Decisive Role of Oxygen Vacancy in Ferroelectric versus Ferromagnetic Mn-Doped BaTiO3 Thin Films. Journal of Applied Physics, 109(8)
Sun, H., X. Wang, and X. Yao (2010). Structure and Electric Properties of Sm Doped BaTiO3 Ceramics. Ferroelectrics, 404(1); 99–104
Tihtih, M., J. E. F. M. Ibrahim, M. A. Basyooni, R. En-Nadir, I. Hussainova, and I. Kocserha (2023). Functionality and Activity of Sol-Gel-Prepared Co and Fe Co-Doped Lead-Free BTO for Thermo-Optical Applications. ACS Omega, 8(5); 5003–5016
Tyunina, M., J. Peräntie, T. Kocourek, S. Saukko, H. Jantunen, M. Jelinek, and A. Dejneka (2020). Oxygen Vacancy Dipoles in Strained Epitaxial BaTiO3 Films. Physical Review Research, 2(2); 023056
Wang, D., J. Lu, J. Gou, Z. Wang, M. Wang, X. Gong, and S. Hao (2019). A Rapid Method for the Synthesis of Perovskite (ATiO3, A=Ca, Sr, Ba) in Molten Chloride. Ceramics International, 45(15); 19547–19549
Xue, P., H. Wu, W. Xia, Z. Pei, Y. Lu, and X. Zhu (2019). Molten Salt Synthesis of BaTiO3 Nanorods: Dielectric, Optical Properties, and Structural Characterizations. Journal of the American Ceramic Society, 102(5); 2325–2336
Yang, B., C. Wu, J. Wang, J. Bian, L. Wang, M. Liu, and Y. Yang (2020). When C3N4 Meets BaTiO3: Ferroelectric Polarization Plays a Critical Role in Building a Better Photocatalyst. Ceramics International, 46(4); 4248–4255
Zarkov, A., A. Stanulis, J. Sakaliuniene, S. Butkute, B. Abakeviciene, T. Salkus, and A. Kareiva (2015). On the Synthesis of Yttria-Stabilized Zirconia: A Comparative Study. Journal of Sol-Gel Science and Technology, 76(2); 309–319
Zhang, F., X. Zeng, D. Bi, K. Guo, Y. Yao, and S. Lu (2018). Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method. Materials, 11(11); 1–15
Zhuang, Y., X. Wei, Y. Zhao, J. Li, X. Fu, Q. Hu, and Z. Xu (2018). Microstructure and Elastic Properties of BaTiO3 Nanofibers Sintered in Various Atmospheres. Ceramics International, 44(2); 2426–2431
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.