Some Coefficient Problems for Subclasses of Holomorphic Functions in Complex Order Associating Sălăgeăn q-Differential Operator
Abstract
A function with complex values and at every point of the specific domain contains a derivative is commonly known as analytic functions which is also referred as holomorphic functions. We begin by interpreting \(A\) as the class for all holomorphic functions \(L(\xi)\) with a Taylor series expansion written in the form: \[L(\xi) = \xi + \sum_{i=2}^{\infty} x_i \xi^i\] where \(x_i \in \mathbb{C}\) and \(\xi \in D\). \(D\) is the open unit disk where \(D = \{\xi : \xi \in \mathbb{C}, |\xi| < 1 \}\). Furthermore, we suggest the subclass of \(A\) that is univalent in \(D\) represented as \(S\). It is commonly known that the main subclasses of class \(S\) are the class of starlike functions and the class of convex functions. To develop and analyze the Fekete-Szegö problems, the theory of geometric function contributes significantly to this. Moreover, the frequent use of \(q\)-calculus as a general direction of research among mathematicians has caught our attention. In this research, we attained the initial coefficients, \(x_2\) and \(x_3\), and the upper bound for the functional \(|x_3 - \nu x_2^2|\) of functions \(L\) in the two new subclasses that are introduced by involving the Sălăgeăn \(q\)-differential operator, \(M_q^\eta L(\xi)\) and the definition of subordination.
References
Akca, H., J. Benbourenane, and H. Eleuch (2019). The q-Derivative And Differential Equation. Journal of Physics: Conference Series, 1411; 012002.
Al-Shbeil, I., M. I. Faisal, M. Arif, M. Abbas, and R. K. Alhefthi (2023). Investigation of the Hankel Determinant Sharp Bounds for a Specific Analytic Function Linked to a Cardioid-Shaped Domain. Mathematics, 11(17); 3664.
Alsoboh, A. and M. Darus (2019). On Fekete-Szegö Problem Associated With q-Derivative Operator. Journal of Physics: Conference Series, 1212; 012003.
Amini, E., S. Al-Omari, K. Nonlaopon, and D. Baleanu (2022). Estimates For Coefficients Of Bi-Univalent Functions Associated With A Fractional q-Difference Operator. Symmetry, 14(5); 879.
Andrei, L. and V. Cuas (2021). A Generalized Class Of Functions Defined By The q-Difference Operator. Symmetry, 13(12); 2361.
Ayinla, R. O. and T. O. Opoola (2019). The Fekete-Szegö Functional And Second Hankel Determinant For A Certain Subclass Of Analytic Functions. Applied Mathematics, 10; 1071–1078.
Fekete, M. and G. Szeö (1933). Eine Bermerkung Über Ungerade Schlichte Funktionen. J. London Math. Soc., 8(2); 85–89.
Hern, A. L. P., A. Janteng, and R. Omar (2022). Subclasses Of Analytic Functions With Negative Coefficients Involving q-Derivative Operator. Science and Technology Indonesia, 7(3); 327–332.
Hu, Q., T. G. Shaba, J. Younis, B. Khan, W. K. Mashwani, and M. Caglar (2022). Applications Of q-Derivative Operator To Subclasses Of Bi-Univalent Functions Involving Gegenbauer Polynomials. Applied Mathematics in Science and Engineering, 30(1); 501–520.
Hussain, S., S. Khan, M. A. Zaighum, and M. Darus (2017). Certain Subclass Of Analytic Functions Related With Conic Domains And Associated With Salagean q-Differential Operator. AIMS Mathematics, 2(4); 622–634.
Hussain, S., S. Khan, M. A. Zaighum, and M. Darus (2018). Applications Of A q-Salagean Type Operator On Multivalent Functions. Journal of Inequalities and Applications, 2018; 1–12.
Jackson, F. H. (1909). On q-Functions And A Certain Difference Operator. Transactions of the Royal Society of Edinburgh, 46(2); 253–281.
Jackson, F. H. (1910). On q-Definite Integrals. The Quarterly Journal of Pure and Applied Mathematics, 41; 193–203.
Janteng, A., A. P. H. Liew, and R. Omar (2020). Fekete-Szegö Functional Of Classes Of Analytic Functions Involving The q-Derivative Operator. Applied Mathematical Sciences, 14(10); 481–488.
Khan, M. G., B. Ahmad, G. Murugusundaramoorthy, and S. Nadeem (2022). Third Hankel Determinant And Zalcman Functional For A Class Of Starlike Functions With Respect To Symmetric Points Related With Sine Function. AIMS Mathematics, 7(4); 5405–5423.
Khan, N., B. Khan, Q. Z. Ahmad, and S. Ahmad (2017). Some Convolution Properties Of Multivalent Analytic Functions. AIMS Mathematics, 2(2); 260–268.
Kowalczyk, B. and A. Lecko (2014). The Fekete-Szegö Inequality For Close-To-Convex Functions With Respect To A Certain Starlike Function Dependent On A Real Parameter. Journal of Inequalities and Applications, 2014; 1–16.
Ma, W. and M. Minda (1992). A Unified Treatment Of Some Special Classes Of Univalent Functions. In International Conference on Complex Analysis at the Nankai Institute of Mathematics. pages 157–169.
Naeem, M., S. Hussain, T. Mahmood, S. Khan, and M. Darus (2019). A New Subclass Of Analytic Functions Defined By Using Salagean q-Differential Operator. Mathematics, 7(5); 458.
Oros, G. I. (2023). New Developments In Geometric Function Theory. Axioms, 12(1); 59.
Ramachandran, C., T. Soupramanien, and B. A. Frasin (2017). New Subclasses Of Analytic Function Associated With q-Difference Operator. European Journal of Pure and Applied Mathematics, 10(2); 348–362.
Saliu, A., K. I. Noor, S. Hussain, and M. Darus (2020). On Quantum Differential Subordination Related With Certain Family Of Analytic Functions. Journal of Mathematics, 2021(1); 6675732.
Seoudy, T. M. and M. K. Aouf (2016). Coefficient Estimates Of New Classes Of q-Starlike And q-Convex Functions Of Complex Order. Journal of Mathematical Inequalities, 10(1); 135–145.
Shaba, T. G., S. Araci, B. O. Adebesin, F. Tchier, S. Zainab, and B. Khan (2023). Sharp Bounds Of The Fekete-Szegö Problem And Second Hankel Determinant For Certain Bi-Univalent Functions Defined By A Novel q-Differential Operator Associated With q-Limacon Domain. Fractal Fract., 7(7); 506.
Srivastava, H. M., S. Hussain, A. Raziq, and M. Raza (2018). The Fekete-Szegö Functional For A Subclass Of Analytic Functions Associated With Quasi-Subordination. Carpathian Journal of Mathematics, 34(1); 103–113.
Srivastava, H. M., B. Khan, N. Khan, M. Tahir, S. Ahmad, and N. Khan (2021). Upper Bound Of The Third Hankel Determinant For A Subclass Of q-Starlike Functions Associated With The q-Exponential Function. Bulletin des Sciences Mathematiques, 167; 102942.
Yie, T. S. and A. Janteng (2024). Fekete-Szegö Functional For Classes X qn (φ) And Y qn(φ). Malaysian Journal of Fundamental and Applied Sciences, 20; 435–443.
Zainab, S., M. Raza, Q. Xin, M. Jabeen, S. N. Malik, and S. Riaz (2021). On q-Starlike Functions Defined By q-Ruscheweyh Differential Operator In Symmetric Conic Domain. Symmetry, 13(10); 1947.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.